Stat 431, Spring 2011 Statistical Inference

<u>Homework assignments</u> <u>Readings</u> <u>Schedule of topics</u>

People

		Contact	Office hours	
Instructor	<u>Mikhail</u> Traskin	page for email address.	Tuesday/Thursday, 10:30 am - 12:00 pm, 466 Jon M. Huntsman Hall	
III A	Andrew Hong		Friday 10 am - 12 pm, 427.3 Jon M. Huntsman Hall	

Additional help

The Stat Lab provides help with statistics to anybody on campus. It is located in F96 JMHH and is open on days when classes are in session. For staffing and hours, see http://stat.wharton.upenn.edu/~sivana/statlab.html. Whoever you find there may or may not be able to help with homework, however, your TA Andrew Hong does not have StatLab hours.

Lectures

Section 003: 270 JMHH, Tuesday/Thursday, 3:00 pm - 4:30 pm.

Course homepage

Refer to http://stat.wharton.upenn.edu/~mtraskin/courses/stat431/index.html (this page) for syllabus.

Statistics 431 is using webCafé. You can gain access by going to http://webCafe.wharton.upenn.edu and following the link to STAT and then to your section. All materials for this course will be distributed and managed via

this website, and you will be able to monitor your grade entries throughout the semester.

An important feature of webCafé is the discussion board where everybody can place questions and comments. We will be using it extensively for answering your questions about homeworks, exams and scheduling. You are urged to go there first to see whether your question has already been asked and answered, and, if not, to place your question so it can be answered once for everybody.

Note for non-Wharton students: If you do not have a Wharton computing account, you will need to establish one to access the website. The account also provides access to the computing labs in Wharton and to the intranet. To get an account, on or after the first day of classes, go to http://accounts.wharton.upenn.edu. After you have obtained your account, allow up to 12 hours for activation. Wharton students and students who have recently taken a Wharton course have existing accounts.

Course description

This course is about making decisions under uncertainty using statistical methods. The topics include estimation, confidence intervals, hypothesis testing, single and multiple linear regression, one-way and two-way analysis of variance, variable selection, logistic regression and categorical data analysis.

Interpretation of the results and analysis of assumptions is an important part of the course. <u>Statistical computing package</u> will be extensively used to carry out the computations. However no special emphasis will be made on the details of computations.

Prerequisites

Familiarity with basic probability theory is assumed. Stat 430 or equivalent should provide sufficient background. Otherwise chapters 2, 3, 4 and 5 of the Devore's book will be a good substitute together with a short review of fundamental concepts used by the course, written by Prof. David Freedman, University of California, Berkeley.

Statistical computing package

We'll be using JMP version 8, available in the Wharton Computer Labs, F75/F80 Jon M. Huntsman Hall (Wharton account required: see http://accounts.wharton.upenn.edu). Individual copies are also available for purchase at http://upenn.onthehub.com. A 3-year license costs \$59.95. You may also purchase six-month (\$29.95) and twelve-month (\$49.95) licenses at

http://estore.e-academy.com. Please read system requirements carefully before making a purchase to make sure that it will work on your computer. In particular, *JMP 8 is not supported on Windows Vista Home Basic Edition*. When buying, make sure that you are downloading a correct (Windows/Mac) version: there were cases when people bought a wrong version.

You may also use R, an open-source statistical software that is available from The R Project for Statistical Computing.

Recommended text book

J. L. Devore, *Probability and Statistics for Engineering and the Sciences*, 7th ed. 6th or 8th editions will also work.

Assignments

Grading

Homework assignments: 20% (lowest score excluded)

Midterm: 30%Final: 50%

Homework assignments

- There will be about 10 homework assignments.
- Homeworks will be assigned on webCafé and will usually be due a week later. Problems involving computer calculations should be worked using JMP or R. *No extensions to the due date will be given*. However, the lowest homework assignment score will be omitted from the final grade calculation. Unsubmitted work counts as a zero score. Back up your work frequently on a data stick, so you can submit it from a Wharton computer if yours breaks down.
- Homeworks should be written by editing a copy of the MS Word file that
 contains problem statements. Each solution should be inserted after the
 respective problem statement following YOUR SOLUTION:.
 Handwriting is not accepted.
- Hand in your homework solutions always in <u>both</u> of the following ways:
 - Hand in a stapled paper copy of your solutions in the Statistics Department (JMHH, 4th floor, turn right exiting from the elevator) in the box marked with your section (not in class and not to the TAs), AND
 - Submit your MS Word file electronically via Assignment Submission

on webCafé.

For re-grades and missing claims, there must be an electronic copy e-mailed before the deadline.

- Your solutions must have on the cover page your
 - o name (as it appears on webCafé),
 - section.
 - o school (Wharton/non-Wharton), and
 - o year (freshman, sophomore, etc.).
- Homework is designed to teach, and you are encouraged to seek help from the instructor and the TAs if you have questions. You may also work with and help each other. You must, however, submit your own solutions, with your own write-up and in your own words. Verbatim copying is against the honor code.
- Graded homeworks will be returned in the same boxes in the Statistics Department.
- Scores for homeworks are finalized one week after the graded copies are handed back. Thereafter there will be no changes and no re-grading. Do not delay checking your graded homeworks to the end of the semester.

Exams

In-class midterm: Thursday, March 3. No make-up.

Final: TBA

Both exams are open notes (no textbooks). Calculators may be used but no laptops are allowed.

Readings

• Paul F. Velleman, "Truth, Damn Truth, and Statistics", *Journal of Statistics Education*, Volume 16, Number 2 (2008), http://www.amstat.org/publications/jse/v16n2/velleman.html

Schedule of topics

Lectures will closely follow the text which will be occasionally supplemented with handouts on topics going beyond those covered in the book. A review of basic probability theory and common distributions, e.g. chapters 2, 3, 4 and 5 in <u>Devore</u>, might be useful. Topics discussed in sections 3.4 (binomial distribution), 4.3 (normal distribution) and 5.4 (central limit theorem) are of special interest.

Lec#	Date	Topic	Text
01	Thu 13 Jan	Introduction/overview	
02	Tue 18 Jan	Normality; boxplots; QQ plots (probability plots)	1.4, 4.6
03	Thu 20 Jan	Stem and Leaf diagrams; Scatter plots; CLT; Confidence intervals: known variance	1.3, 1.4, 4.3, 4.6 and 7.1
04	Tue 25 Jan	Confidence intervals: known variance; Large-sample CIs; Confidence intervals for population proportion; CIs: unknown variance; Non-normal population distribution	7.1 - 7.4
05	Thu 27 Jan	Confidence intervals for population proportion	7.1 - 7.4
06	Tue 1 Feb	One-sample hypothesis testing	8.1 - 8.5
07	Thu 3 Feb	One-sample hypothesis testing and intervals	8.1 - 8.5
08	Tue 8 Feb	Two-sample inference: testing and intervals	9.1 - 9.5
09	Thu 10 Feb	Two-sample inference: testing and intervals	9.1 - 9.5
10	Tue 15 Feb	Linear least-squares regression	13.4, 13.5
11	Thu 17Feb	Simple linear least-squares regression; correlation coefficient	12.1 - 12.5
12	Tue 22 Feb	Simple linear least-squares regression; correlation coefficient; regression and ANOVA	12.1 - 12.5
13	Thu 24 Feb	Multiple linear least-squares regression; parameter estimation; hypothesis test for a coefficient of linear regression model; model utility test; diagnostic plots	13.1 - 13.5
14	Tue 1 Mar	Review of topics covered so far	
15	Thu 3 Mar	Midterm	
16	Tue 15 Mar	Multiple linear least-squares regression; CI for the predicted value; PI for future y value; F-test for a group of predictors	13.1 - 13.5

17	Thu 17 Mar	Multiple linear least-squares regression; F-test for a group of predictors; variable standardization; variable selection: stepwise regression	13.1 - 13.5
18	Tue 22 Mar	Multiple linear least-squares regression; variable selection: stepwise regression	13.1 - 13.5
19	Thu 24 Mar	Single factor (one-way) ANOVA	10.1 - 10.3
20	Tue 29 Mar	Single factor (one-way) ANOVA	10.1 - 10.3
21	Thu 31 Mar	Two factor (two-way) ANOVA	11.1 - 11.2
22	Tue 5 Apr	Two factor (two-way) ANOVA	11.1 - 11.2
23	Thu 7 Apr	Maximum Likelihood estimation; logistic regression	13.2
24	Tue 12 Apr	Logistic regression: drop-in-deviance test	
25	Thu 14 Apr	Goodness-of-fit tests	14.1 - 14.2
26	Tue 19 Apr	Categorical data analysis	14.3
27	Thu 21 Apr	Distribution-free procedures	15.1 - 15.2
28	Tue 26 Apr	Course summary	