Statistics 500=Psychology 611=Biostatistics 550 Introduction to Regression and Anova

Paul R. Rosenbaum Professor, Statistics Department, Wharton School

Description

Statistics 500/Psychology 611 is a second course in statistics for PhD students in the social, biological and business sciences. It covers multiple linear regression and analysis of variance. Students should have taken an undergraduate course in statistics prior to Statistics 500.

Topics

- 1-Review of basic statistics.
- 2-Simple regression.
- 3-Multiple regression.
- 4-General linear hypothesis.
- 5-Woes of Regression Coefficients.
- 6-Transformations.
- 7-Polynomials.
- 8-Coded variables.
- 9-Diagnostics.
- 10-Variable selection.
- 11-One-way anova.
- 12-Two-way and factorial anova.

How do I get R for free? <u>http://cran.r-project.org/</u>

Final exam date: <u>http://www.upenn.edu/registrar/</u> Holidays, breaks, last class: <u>http://www.upenn.edu/almanac/3yearcal.html</u>

My web page: <u>http://www-stat.wharton.upenn.edu/~rosenbap/index.html</u> Email: <u>rosenbaum@wharton.upenn.edu</u> Phone: 215-898-3120 Office: 473 Huntsman Hall (in the tower, 4th floor) Office Hours: Tuesday 1:30-2:30 and by appointment.

The bulk pack and course data in R are on my web page.

Statistics 500 Bulk Pack - 2 -

Overview

Review of Basic Statistics

Descriptive statistics, graphs, probability, confidence intervals, hypothesis tests.

Simple Regression Simple regression uses a line with one predictor to predict one outcome.

Multiple Regression

Multiple regression uses several predictors in a linear way to predict one outcome.

General Linear Hypothesis The general linear hypothesis asks whether several variables may be dropped from a multiple regression.

Woes of Regression Coefficients

Discussion of the difficulties of interpreting regression coefficients and what you can do.

Transformations

A simple way to fit curves or nonlinear models: transform the variables.

Polynomials Another way to fit curves: include quadratics and interactions.

Coded Variables Using nominal data (NY vs Philly vs LA) as predictors in regression.

Diagnostics How to find problems in your regression model: residual, leverage and influence.

Variable Selection Picking which predictors to use when many variables are available.

One-Way Anova Simplest analysis of variance: Do several groups differ, and if so, how?

> Two-Way Anova Study two sources of variation at the same time.

Factorial Anova Study two or more treatments at once, including their interactions.

Common Questions

Statistics Department Courses (times, rooms) http://www.upenn.edu/registrar/roster/stat.html

Final Exams (dates, rules) http://www.upenn.edu/registrar/finals/spring05_index.html

Computing and related help at Wharton <u>http://inside.wharton.upenn.edu/</u>

Statistical Computing in the Psychology Department http://www.psych.upenn.edu

When does the the course start? When does it end? Holidays? <u>http://www.upenn.edu/almanac/3yearcal.html</u>

Does anybody have any record of this? <u>http://www.upenn.edu/registrar/</u>

Huntsman Hall

http://www.facilities.upenn.edu/mapsBldgs/view_bldg.php3?id=146 http://www.facilities.upenn.edu/mapsBldgs/view_map.php3?id=393

Suggested reading

Box, G. E. P. (1966) Use and Abuse of Regression, Technometrics, 8, 625-629. http://www.jstor.org/ or

 $\label{eq:http://www.jstor.org/stable/1266635?&Search=yes&term=abuse&term=box&list=hide&searchUri=&2Faction%2FdoAdvancedSearch%3Fq0%3Dbox%26f0%3Dau%26c0%3DAND%26q1%3Dabuse%26f1%3Dti%26c1%3DAND%26q2%3D%26f0%3Dav26c0%3DAND%26q1%3Dabuse%26f1%3Dti%26c1%3DAND%26q2%3DAv26f0%3Dav26f0%3Dav26f3%3Dall%26wc%3Don%26sd%3D%26ed%3D%26fa%3D%26jo%3D%26dc.Statistics%3DStatistics%26Search%3DSearch&item=1&ttl=1&returnArticleService=showArticle}$

Helpful articles from JSTOR http://www.jstor.org/

- 1. The Analysis of Repeated Measures: A Practical Review with Examples B. S. Everitt *The Statistician*, Vol. 44, No. 1. (1995), pp. 113-135.
- 2. The hat matrix in regression and anova. D. Hoaglin and R. Welsh, *American Statistician*, Vol 32, (1978), pp. 17-22.
- 3. The Use of Nonparametric Methods in the Statistical Analysis of the Two-Period Change-Over Design Gary G. Koch *Biometrics*, Vol. 28, No. 2. (Jun., 1972), pp. 577-584.

Some Web Addresses

Web page for Sheather's text <u>http://www.stat.tamu.edu/~sheather/</u>

Amazon for Sheather's text (required) http://www.amazon.com/Modern-Approach-Regression-Springer-Statistics/dp/0387096078/ref=tmm_hrd_title_0/186-7302133-0606755?ie=UTF8&qid=1315493088&sr=1-1

Alternative text used several years ago (optional alternative, not suggested) <u>http://www.amazon.com/Applied-Regression-Analysis-Multivariable-</u> <u>Methods/dp/0495384968/ref=sr_1_1?s=books&ie=UTF8&qid=1315493363&sr=1-1</u>

Good supplement about R (optional, suggested) <u>http://www.amazon.com/Data-Analysis-Graphics-Using-Example-</u> <u>Based/dp/0521762936/ref=sr_1_1?s=books&ie=UTF8&qid=1315493138&sr=1-1</u>

Review basic statistics, learn basic R (optional, use if you need it) <u>http://www.amazon.com/Introductory-Statistics-R-</u> <u>Computing/dp/0387790535/ref=sr_1_1?s=books&ie=UTF8&qid=1315493184&sr=1-1</u>

Excellent text, alternative to Sheather, more difficult than Sheather <u>http://www.amazon.com/Applied-Regression-Analysis-Probability-</u> <u>Statistics/dp/0471170828/ref=sr_1_1?s=books&ie=UTF8&qid=1315493220&sr=1-1</u>

Good text, alternative/supplement to Sheather, easier than Sheather http://www.amazon.com/Regression-Analysis-Example-Probability-Statistics/dp/0471746967/ref=tmm_hrd_title_0?ie=UTF8&qid=1315493316&sr=1-1

Free R manuals at R home page. Start with "An Introduction to R" <u>http://cran.r-project.org/</u>

--> Manuals --> An Introduction to R

--> Search --> Paradis --> R for Beginners

My web page (bulk pack, course data) http://www-stat.wharton.upenn.edu/~rosenbap/index.html

Computing

How do I get R for free? <u>http://cran.r-project.org/</u>

After you have installed R, you can get the **course data** in the R-workspace on my web page: <u>http://www-stat.wharton.upenn.edu/~rosenbap/index.html</u>

I will probably add things to the R-workspace during the semester. So you will have to go back to my web page to **get the latest version**.

A common problem: You go to my web page and download the latest R-workspace, but it looks the same as the one you had before – the new stuff isn't there. This happens when your web browser thinks it has downloaded the file before and will save you time by not downloading it again. Bad web browser. You need to clear the cache; then it will get the new version.

Most people find an R book helpful. I recommend Maindonald and Braun, *Data Analysis and Graphics Using R*, published by Cambridge. A more basic book is Dalgaard, *Introductory Statistics with R*, published by Springer.

At <u>http://cran.r-project.org/</u>, click on **manuals** to get free documentation. "An Introduction to R" is there, and it is useful. When you get good at R, do a search at the site for Paradis' "R for Beginners," which is very helpful, but not for beginners.

Textbook

My sense is that students need a textbook, not just the lectures and the bulk pack.

The 'required' textbook for the course is Sheather (2009) *A Modern Approach to Regression with R*, NY: Springer. There is a little matrix algebra in the book, but there is none in the course. Sheather replaces the old text, Kleinbaum, Kupper, Muller and Nizam, *Applied Regression and other Multivariable Methods*, largely because this book has become very expensive. An old used edition of Kleinbaum is a possible alternative to Sheather – it's up to you. Kleinbaum does more with anova for experiments. A book review by Gudmund R. Iversen of Swathmore College is available at:

http://www.jstor.org/stable/2289682?&Search=yes&term=kleinbaum&term=kup per&list=hide&searchUri=%2Faction%2FdoAdvancedSearch%3Fq0%3Dkleinbau m%26f0%3Dau%26c0%3DAND%26q1%3Dkupper%26f1%3Dau%26c1%3DAN D%26q2%3D%26f2%3Dall%26c2%3DAND%26q3%3D%26f3%3Dall%26wc%3 Don%26re%3Don%26sd%3D%26ed%3D%26la%3D%26jo%3D%26dc.Statistic s%3DStatistics%26Search%3DSearch&item=6&ttl=7&returnArticleService=show Article

Some students might prefer one of the textbooks below, and they are fine substitutes.

If you would prefer an easier, less technical textbook, you might consider *Regression by Example* by Chatterjee and Hadi. The book has a nice chapter on transformations, but it barely covers anova. An earlier book, now out of print, with the same title by Chatterjee and Price is very similar, and probably available inexpensively used.

http://www.amazon.com/Regression-Analysis-Example-Probability-Statistics/dp/0471746967/ref=sr 1 2?ie=UTF8&s=books&qid=1252524629&sr= 1-2

If you know matrix algebra, you might prefer the text *Applied Regression Analysis* by Draper and Smith. It is only slightly more difficult than Kleinbaum, and you can read around the matrix algebra.

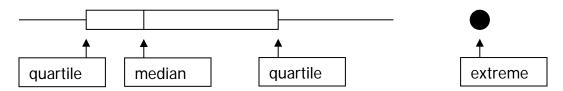
http://www.amazon.com/Applied-Regression-Analysis-Probability-Statistics/dp/0471170828/ref=sr 1 1?ie=UTF8&s=books&qid=1252524403&sr= 1-1

If you use R, then as noted previously, I recommend the additional text Maindonald and Braun, *Data Analysis and Graphics Using R*, published by Cambridge. It is in its third edition, which is a tad more up to date than the first or second editions, but you might prefer an inexpensive used earlier edition if you can find one.

Graded Work

Your grade is based on three exams. Copies of old exams are at the end of this bulkpack. The first two exams are take-homes in which you do a dataanalysis project. They are exams, so you do the work by yourself. The first exam covers the basics of multiple regression. The second exam covers diagnostics, model building and variable selection. The final exam is sometimes in-class, sometimes take home. The date of the final exam is determined by the registrar – see the page above for Common Questions. The decision about whether the final is in-class or take-home will be made after the first take-home is graded. That will be in the middle of the semester. If you need to make travel arrangements before the middle of the semester, you will need to plan around an in-class final.

The best way to learn the material is to practice using the old exams. There are three graded exams. If for each graded exam, you did two practice exams, then you would do nine exams in total, which means doing nine data analysis projects. With nine projects behind you, regression will start to be familiar.


Review of Basic Statistics – Some Statistics

- The review of basic statistics is a quick review of ideas from your first course in statistics.
- n measurements: $X_1, X_2, ..., X_n$

• mean (or average):
$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- order statistics (or data sorted from smallest to largest): Sort X₁, X₂,..., X_n placing the smallest first, the largest last, and write X₍₁₎ ≤ X₍₂₎ ≤...≤ X_(n), so the smallest value is the first order statistic, X₍₁₎, and the largest is the nth order statistic, X_(n). If there are n=4 observations, with values X₁ = 5, X₂ = 4, X₃ = 9, X₄ = 5, then the n=4 order statistics are X₍₁₎ = 4, X₍₂₎ = 5, X₍₃₎ = 5, X₍₄₎ = 9.
- **median** (or middle value): If n is odd, the median is the middle order statistic – e.g., $X_{(3)}$ if n=5. If n is even, there is no middle order statistic, and the median is the average of the two order statistics closest to the middle – e.g., $\frac{X_{(2)} + X_{(3)}}{2}$ if n=4. Depth of median is $\frac{n+1}{2}$ where a "half" tells you to average two order statistics – for n=5, $\frac{n+1}{2} = \frac{5+1}{2} = 3$, so the median is $X_{(3)}$, but for n=4, $\frac{n+1}{2} = \frac{4+1}{2} = 2.5$, so the median is $\frac{X_{(2)} + X_{(3)}}{2}$. The median cuts the data in half – half above, half below.
- quartiles: Cut the data in quarters a quarter above the upper quartile, a quarter below the lower quartile, a quarter between the lower quartile and the median, a quarter between the median and the upper quartile. The interquartile range is the upper quartile minus the lower quartile.

• **boxplot**: Plots median and quartiles as a box, calls attention to extreme observations.

• **sample standard deviation**: square root of the typical squared deviation from the mean, sorta,

$$S = \sqrt{\frac{(X_1 - \overline{X})^2 + (X_2 - \overline{X})^2 + \ldots + (X_n - \overline{X})^2}{n - 1}}$$

however, you don't have to remember this ugly formula.

- **location**: if I add a constant to every data value, a measure of location goes up by the addition of that constant.
- scale: if I multiply every data value by a constant, a measure of scale is multiplied by that constant, but a measure of scale does not change when I add a constant to every data value.

Check your understanding: What happens to the mean if I drag the biggest data value to infinity? What happens to the median? To a quartile? To the interquartile range? To the standard deviation? Which of the following are measures of location, of scale or neither: median, quartile, interquartile range, mean, standard deviation? In a boxplot, what would it mean if the median is closer to the lower quartile than to the upper quartile?

Topic: Review of Basic Statistics – Probability

- probability space: the set of everything that can happen, Ω. Flip two coins, dime and quarter, and the sample space is Ω = {HH, HT, TH, TT} where HT means "head on dime, tail on quarter", etc.
- probability: each element of the sample space has a probability attached, where each probability is between 0 and 1 and the total probability over the sample space is 1. If I flip two fair coins: prob(HH) = prob(HT) = prob(TH) = prob(TT) = 1/4.
- random variable: a rule X that assigns a number to each element of a sample space. Flip to coins, and the number of heads is a random variable: it assigns the number X=2 to HH, the number X=1 to both HT and TH, and the number X=0 to TT.
- distribution of a random variable: The chance the random variable X takes on each possible value, x, written prob(X=x). Example: flip two fair coins, and let X be the number of heads; then prob(X=2) = ¼, prob(X=1) = ½, prob(X=0) = ¼.
- cumulative distribution of a random variable: The chance the random variable X is less than or equal to each possible value, x, written prob(X≤x). Example: flip two fair coins, and let X be the number of heads; then prob(X≤0) = ¼, prob(X≤1) = ¾, prob(X≤2) = 1. Tables at the back of statistics books are often cumulative distributions.
- independence of random variables: Captures the idea that two random variables are unrelated, that neither predicts the other. The formal definition which follows is not intuitive you get to like it by trying many intuitive examples, like unrelated coins and taped coins, and finding the definition always works. Two random variables, X and Y, are independent if the chance that simultaneously X=x and Y=y can be found by multiplying the separate probabilities

prob(X=x and Y=y) = prob(X=x) prob(Y=y) for every choice of x,y.

Check your understanding: Can you tell exactly what happened in the sample space from the value of a random variable? Pick one: Always, sometimes, never. For people, do you think **X**=height and **Y**=weight are independent? For undergraduates, might **X**=age and **Y**=gender (1=female, 2=male) be independent? If I flip two fair coins, a dime and a quarter, so that prob(HH) = prob(HT) = prob(TH) = prob(TT) = $\frac{1}{4}$, then is it true or false that getting a head on the dime is independent of getting a head on the quarter?

Topic: Review of Basics – Expectation and Variance

• Expectation: The expectation of a random variable **X** is the sum of its possible values weighted by their probabilities,

$$E(\mathbf{X}) = \sum_{x} x \cdot prob(\mathbf{X} = x)$$

- Example: I flip two fair coins, getting X=0 heads with probability ¼, X=1 head with probability ½, and X=2 heads with probability ¼; then the expected number of heads is E(X) = 0 · 1/4 + 1 · 1/2 + 2 · 1/4 = 1, so I expect 1 head when I flip two fair coins. Might actually get 0 heads, might get 2 heads, but 1 head is what is typical, or expected, on average.
- Variance and Standard Deviation: The standard deviation of a random variable X measures how far X typically is from its expectation *E*(X). Being too high is as bad as being too low we care about errors, and don't care about their signs. So we look at the squared difference between X and *E*(X), namely D = {X *E*(X)}², which is, itself, a random variable. The variance of X is the expected value of D and the standard deviation is the square root of the variance, var(X) = *E*(D) and *st. dev.*(X) = √var(X).
- Example: I independently flip two fair coins, getting X=0 heads with probability ¼, X=1 head with probability ½, and X=2 heads with probability ¼. Then E(X)=1, as noted above. So D = {X E(X)}² takes the value D =

 $(0-1)^2 = 1$ with probability $\frac{1}{4}$, the value $\mathbf{D} = (1-1)^2 = 0$ with probability $\frac{1}{2}$, and the value $\mathbf{D} = (2-1)^2 = 1$ with probability $\frac{1}{4}$. The variance of \mathbf{X} is the expected value of \mathbf{D} namely: $\operatorname{var}(\mathbf{X}) = E(\mathbf{D}) = 1 \cdot \frac{1}{4} + 0 \cdot \frac{1}{2} + 1 \cdot \frac{1}{4} = \frac{1}{2}$. So the standard deviation is *st. dev.* $(\mathbf{X}) = \sqrt{\operatorname{var}(\mathbf{X})} = \sqrt{\frac{1}{2}} = 0.707$. So when I flip two fair coins, I expect one head, but often I get 0 or 2 heads instead, and the typical deviation from what I expect is 0.707 heads. This 0.707 reflects the fact that I get exactly what I expect, namely 1 head, half the time, but I get 1 more than I expect a quarter of the time, and one less than I expect a quarter of the time.

Check your understanding: If a random variance has zero variance, how often does it differ from its expectation? Consider the height **X** of male adults in the US. What is a reasonable number for *E*(**X**)? Pick one: 4 feet, 5'9", 7 feet. What is a reasonable number for *st.dev.*(**X**)? Pick one: 1 inch, 4 inches, 3 feet. If I independently flip three fair coins, what is the expected number of heads? What is the standard deviation?

Topic: Review of Basics – Normal Distribution

Continuous random variable: A continuous random variable can take values with any number of decimals, like 1.2361248912. Weight measured perfectly, with all the decimals and no rounding, is a continuous random variable. Because it can take so many different values, each value winds up having probability zero. If I ask you to guess someone's weight, not approximately to the nearest millionth of a gram, but rather exactly to all the decimals, there is no way you can guess correctly – each value with all the decimals has probability zero. But for an interval, say the nearest kilogram,

there is a nonzero chance you can guess correctly. This idea is captured in by the density function.

- **Density Functions**: A density function defines probability for a continuous random variable. It attaches zero probability to every number, but positive probability to ranges (e.g., nearest kilogram). The probability that the random variable **X** takes values between 3.9 and 6.2 is the area under the density function between 3.9 and 6.2. The total area under the density function is 1.
- Normal density: The Normal density is the familiar "bell shaped curve".

The standard Normal distribution has expectation zero, variance 1, standard deviation $1 = \sqrt{1}$. About 2/3 of the area under the Normal density is between -1 and 1, so the probability that a standard Normal random variable takes values between -1 and 1 is about 2/3. About 95% of the area under the Normal density is between -2 and 2, so the probability that a standard Normal random variable takes values between -2 and 2, so the probability that a standard Normal random variable takes values between -2 and 2 is about .95. (To be more precise, there is a 95% chance that a standard Normal random variable will be between -1.96 and 1.96.) If **X** is a standard Normal random variable, and μ and $\sigma > 0$ are two numbers, then $\mathbf{Y} = \mu + \sigma \mathbf{X}$ has the Normal distribution with expectation μ , variance σ^2 and standard deviation σ , which we write N(μ , σ^2). For example, $\mathbf{Y} = 3 + 2\mathbf{X}$ has expectation 3, variance 4, standard deviation 2, and is N(3,4).

Normal Plot: To check whether or not data, X₁,...,X_n look like they came from a Normal distribution, we do a Normal plot. We get the order statistics – just the data sorted into order – or X₍₁₎ ≤ X₍₂₎ ≤...≤ X_(n) and plot this ordered data against what ordered data from a standard Normal distribution should look like. The computer takes care of the details. A straight line in a

Normal plot means the data look Normal. A straight line with a couple of strange points off the lines suggests a Normal with a couple of strange points (called outliers). Outliers are extremely rare if the data are truly Normal, but real data often exhibit outliers. A curve suggest data that are not Normal. Real data wiggle, so nothing is ever perfectly straight. In time, you develop an eye for Normal plots, and can distinguish wiggles from data that are not Normal. Normal.

Topic: Review of Basics – Confidence Intervals

- Let X₁,..., X_n be n independent observations from a Normal distribution with expectation μ and variance σ². A compact way of writing this is to say X₁,..., X_n are iid from N(μ, σ²). Here, iid means independent and identically distributed, that is, unrelated to each other and all having the same distribution.
- How do we know X₁,..., X_n are iid from N(μ, σ²)? We don't! But we check as best we can. We do a boxplot to check on the shape of the distribution. We do a Normal plot to see if the distribution looks Normal. Checking independence is harder, and we don't do it as well as we would like. We do look to see if measurements from related people look more similar than measurements from unrelated people. This would indicate a violation of independence. We do look to see if measurements taken close together in time are more similar than measurements taken far apart in time. This would indicate a violation of independence. Remember that statistical methods come with a warrantee of good performance if certain assumptions are true, assumptions like X₁,..., X_n are iid from N(μ, σ²). We check the assumptions to make sure we get the promised good performance of statistical methods. Using statistical methods when the assumptions are not

true is like putting your CD player in washing machine – it voids the warrantee.

- To begin again, having checked every way we can, finding no problems, assume X₁,..., X_n are iid from N(μ, σ²). We want to estimate the expectation μ. We want an interval that in most studies winds up covering the true value of μ. Typically we want an interval that covers μ in 95% of studies, or a **95% confidence interval**. Notice that the promise is about what happens in most studies, not what happened in the current study. If you use the interval in thousands of unrelated studies, it covers μ in 95% of these studies and misses in 5%. You cannot tell from your data whether this current study is one of the 95% or one of the 5%. All you can say is the interval usually works, so I have confidence in it.
- If X_1, \ldots, X_n are iid from N(μ, σ^2), then the confidence interval uses the sample mean, \overline{X} , the sample standard deviation, *s*, the sample size, *n*, and a critical value obtained from the t-distribution with *n*-1 degrees of freedom, namely the value, $t_{0.025}$, such that the chance a random variable with a t-distribution is above $t_{0.025}$ is 0.025. If *n* is not very small, say n>10, then $t_{0.025}$ is near 2. The 95% confidence interval is:

$$\overline{X} \pm \text{(allowance for error)} = \overline{X} \pm \frac{t_{0.025} \cdot s}{\sqrt{n}}$$

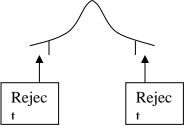
Topic: Review of Basics – Hypothesis Tests

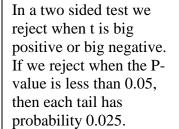
- Null Hypothesis: Let X₁,..., X_n be n independent observations from a Normal distribution with expectation μ and variance σ². We have a particular value of μ in mind, say μ₀, and we want to ask if the data contradict this value. It means something special to us if μ₀ is the correct value perhaps it means the treatment has no effect, so the treatment should be discarded. We wish to test the null hypothesis, H₀: μ = μ₀. Is the null hypothesis plausible? Or do the data force us to abandon the null hypothesis?
- Logic of Hypothesis Tests: A hypothesis test has a long-winded logic, but not an unreasonable one. We say: Suppose, just for the sake of argument, not because we believe it, that the null hypothesis is true. As is always true when we suppose something for the sake of argument, what we mean is: Let's suppose it and see if what follows logically from supposing it is believable. If not, we doubt our supposition. So suppose μ₀ is the true value after all. Is the data we got, namely X₁,..., X_n, the sort of data you would usually see if the null hypothesis were true? If it is, if X₁,..., X_n are a common sort of data when the null hypothesis is true, then the null hypothesis looks sorta ok, and we *accept* it. Otherwise, if there is no way in the world you'd ever see data anything remotely like our data, X₁,..., X_n, if the null hypothesis is true, then we can't really believe the null hypothesis having seen X₁,..., X_n, and we *reject* it. So the basic question is: Is data like the data we got commonly seen when the null hypothesis is true? If not, the null hypothesis has gotta go.
- P-values or significance levels: We measure whether the data are commonly seen when the null hypothesis is true using something called the P-value or significance level. Supposing the null hypothesis to be true, the Pvalue is the chance of data at least as inconsistent with the null hypothesis as

the observed data. If the P-value is $\frac{1}{2}$, then half the time you get data as or more inconsistent with the null hypothesis as the observed data – it happens half the time by chance – so there is no reason to doubt the null hypothesis. But if the P-value is 0.000001, then data like ours, or data more extreme than ours, would happen only one time in a million by chance if the null hypothesis were true, so you gotta being having some doubts about this null hypothesis.

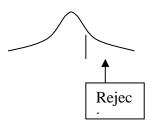
- The magic 0.05 level: A convention is that we "reject" the null hypothesis when the P-value is less than 0.05, and in this case we say we are testing at level 0.05. Scientific journals and law courts often take this convention seriously. It is, however, only a convention. In particular, sensible people realize that a P-value of 0.049 is not very different from a P-value of 0.051, and both are very different from P-values of 0.00001 and 0.3. It is best to report the P-value itself, rather than just saying the null hypothesis was rejected or accepted.
- **Example**: You are playing 5-card stud poker and the dealer sits down and gets 3 royal straight flushes in a row, winning each time. The null hypothesis is that this is a fair poker game and the dealer is not cheating. Now, there are or 2,598,960 five-card stud poker hands, and 4 of these are royal straight flushes, so the chance of a royal straight flush in a fair game is

 $\frac{4}{2,598,960} = 0.000001539$. In a fair game, the chance of three royal straight


flushes in a row is $0.000001539 \times 0.00001539 \times 0.000001539 = 3.6 \times 10^{-18}$. (Why do we multiply probabilities here?) Assuming the null hypothesis, for the sake of argument, that is assuming he is not cheating, the chance he will get three royal straight flushes in a row is very, very small – that is the P-value or significance level. The data we see is highly improbable if the null hypothesis were true, so we doubt it is true. Either the dealer got very, very lucky, or he cheated. This is the logic of all hypothesis tests.


One sample t-test: Let X₁,..., X_n be n independent observations from a Normal distribution with expectation μ and variance σ². We wish to test the null hypothesis, H₀: μ = μ₀. We do this using the one-sample t-test:

$$t = \frac{\sqrt{n} \left(\overline{X} - \mu_0 \right)}{s}$$


looking this up in tables of the t-distribution with n-1 degrees of freedom to get the P-value.

One-sided vs Two-sided tests: In a two-sided test, we don't care whether X is bigger than or smaller than μ₀, so we reject at the 5% level when |t| is one of the 5% largest values of |t|. This means we reject for 2.5% of t's that are very positive and 2.5% of t's that are very negative:

In a one sided test, we do care, and only want to reject when \overline{X} is on one particular side of μ_0 , say when \overline{X} is bigger than μ_0 , so we reject at the 5% level when t is one of the 5% largest values of t. This means we reject for the 5% of t's that are very positive:

In a one sided test we reject on just one side, say big positive. If we reject when the P-value is less than 0.05, the tail on the right has probability 0.05.

 Should I do a one-sided or a two-sided test: Scientists mostly report two-sided tests.

REGRESSION ASSUMPTIONS

Assumption	If untrue:	How to detect:
Independent errors	95% confidence intervals may	Often hard to detect.
	cover much less than 95% of	Questions to ask
	the time. Tests that reject	yourself: (i) Are the
	with p<0.05 may reject true	observations clustered
	hypotheses more than 5% of	into groups, such as
	the time. You may think you	several measurements on
	have much more information	the same person? (ii)
	than you do.	Are observations
		repeated over time?
Normal errors	Thick tails and outliers may	Do a Normal quantile
	distort estimates, and they	plot. This is the one use
	may inflate the estimated	of the Normal quantile
	error variance, so that	plot. A more or less
	confidence intervals are too	straight line in the plot
	long, and hypothesis tests	suggests the data are
	rarely reject false hypotheses.	approximately Normal.
Errors have constant	Least squares gives equal	Plot the residuals against
variance.	weight to all observations, but	the predicted values. A
	if some observations are	fan shape in the plot –
	much more stable than	narrow on one end, wide
	others, it is not sensible to	on the other – suggests
	give equal weight to all	unequal variances. Can
	observations.	also plot residuals against individual x's.
Model is linear.	Linear model may not fit, or	Plot the residuals against
	may give the wrong	the predicted values.
	interpretation of the data.	Curves, such as a U-
		shape, suggest the
		relationship is not linear.
		Can also plot residuals
		against individual x's.

Statistics 500: Basic Statistics Review

- **Reading**: In Kleinbaum, read chapter 3.
- **Practice**: The blood pressure data we discussed in class is given below. It is from MacGregor, et. al. (1979) British Medical Journal, 2, 1106-9. It is the change in systolic blood pressure two hours after taking Captopril, in mm Hg, after-before, so a negative number means a decline in blood pressure. Use JMP or another package to do a Normal plot, a boxplot and a t-test. Think about how you would describe what you see.

-		
Patient #	Change in bp	
1	-9	
2	-4	
3	-21	
4	-3	
5	-20	
6	-31	
7	-17	
8	-26	
9	-26	
10	-10	
11	-23	
12	-33	
13	-19	
14	-19	
15	-23	

Homework: The following data are from Kaneto, Kosaka and Nakao (1969) Endocrinology, 80, 530-536. It is an experiment on 7 dogs. Question is whether stimulation of the vagus nerve increases levels of immunoreactive insulin in the blood. Two measurements were taken on each dog, one before, one five minutes after stimulation. The measurements are blood lead levels of immunoreative insulin ($\mu U / ml$).

	Before	After
Dog		
1	350	480
2	200	130
3	240	250
4	290	310
5	90	280
6	370	1450
7	240	280

Do an appropriate analysis.

Topic: Simple Regression

- Simple regression: Fitting a line a response Y using one predictor X.
- Data: 48 contiguous states in 1972, *i=1,...,48.* Y = FUEL = motor fuel consumption per person in gallons per person. X = TAX = motor fuel tax rate in cents per gallon.
- First thing you do: Plot the data.
- **Least squares**: Fit the line $\hat{Y}_i = \hat{\alpha} + \hat{\beta}X_i$ by minimizing the sum of the squares of the residuals $Y_i \hat{Y}_i$ around the line, $\sum_{i=1}^n (Y_i \hat{Y}_i)^2$.
- Plot the residuals: After you fit a line, you plot the residuals, Y_i Ŷ_i. They tell you where and how the line fits poorly. The minimum is: (i) a boxplot of residuals, (ii) a Normal plot of residuals, (iii) a plot of residuals vs predicted values, Y_i Ŷ_i vs Ŷ_i.
- Statistical Model: The statistical model says:

 $Y_i = \alpha + \beta X_i + \varepsilon_i$ where the ε_i are iid $N(0, \sigma^2)$,

so the Y's were generated by a true line, $\alpha + \beta X_i$, which we do not know, plus errors ε_i that are independent of each other and Normal with mean zero and constant variance σ^2 . We use the residual plots to check whether the model is a reasonable description of the data. The line fitted by least squares, $\hat{Y}_i = \hat{\alpha} + \hat{\beta} X_i$, is our estimate of the true line $\alpha + \beta X_i$.

Properties of least squares estimates: The least squares estimators are great estimators – the best there are – when the model is correct, and not so great when the model is wrong. Checking the model is checking whether we are getting good estimates. When the model is true, least squares estimates are unbiased, that is, correct in expectation or on average, and they have minimum variance among all unbiased estimates, so they are the most stable, most accurate unbiased estimates (but only if the model is correct!).

They are not robust to outliers – one weird observation can move the fitted line anywhere it wants.

Variable	Estimated	Estimated Standard	t-ratio
	Coefficient	Error of Estimated	
		Coefficient	
Constant	â	$se(\hat{\alpha})$	$\frac{\hat{\alpha}}{se(\hat{\alpha})}$
X	β	$se(\hat{eta})$	$\frac{\hat{\beta}}{se(\hat{\beta})}$

Basic Regression Output

- **Hypothesis tests**: Use the t-ratio to test the null hypothesis $H_0: \beta = 0$. Under the model, the hypothesis $H_0: \beta = 0$ implies X and Y are unrelated.
- Confidence intervals: Under the model, a 95% confidence interval for β
 is:

estimate
$$\pm$$
 allowance = $\hat{\beta} \pm t_{0.025} \cdot se(\hat{\beta})$

where $t_{0.025}$ is the upper 2.5% point of the t-distribution with n-2 degrees of freedom. When n-2 is not small, the interval is almost (but not quite) $\hat{\beta} \pm 2 \cdot se(\hat{\beta})$.

Points on a line vs Predictions: Two problems look almost the same, but really are very different. One asks: Where is the line at X=8.5? That is, what is α + β8.5? That problem gets easier as I collect more data and learn where the line really is. The other asks: Where will a new observation on Y be if X=8.5? That is, what is α + β8.5 + ε_{new}? That problem always stays pretty hard, no matter how much data I collect, because I can't predict the new error, ε_{new}, for this new observation no matter how well I know where the line is. Important thing is to make sure you know which answer you

want and to use the right method for that answer. They look similar, but they're not.

• **Regression Anova Table**: Partitions the total variation (or sum of squares) in the data about the mean, namely $\sum_{i=1}^{n} (Y_i - \overline{Y})^2$ into two parts that add back

to the total, namely the variation fitted by the regression, $\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2$, and

the variation in the residuals, $\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$. Degrees of freedom measure

keep track of how many distinct numbers are really being described by a sum of squares. In simple regression, the variation fitted by the regression is just fitted by the slope, $\hat{\beta}$, which is just one number, so this sum of squares has

1 degree of freedom. A mean square is the ratio $\frac{\text{sum of squares}}{\text{degrees of freedom}}$. The

F-ratio is the ratio of two mean squares, a signal to noise ratio. The F-ratio is used to test that all the slopes are zero.

Simple correlation: If the data fall perfectly on a line tilted up, the correlation r is 1. If the data fall perfectly on a line tilted down, the correlation r is -1. If a line is not useful for predicting Y from X, the correlation r is 0. Correlation is always between -1 and 1. The correlation between Y and X is the regression coefficient of standardized Y on

standardized X, that is, the regression of $\frac{Y_i - \overline{Y}}{st. dev(Y)}$ on $\frac{X_i - \overline{X}}{st. dev(X)}$. In

simple, one-predictor regression, the square of the correlation, r^2 , is the percent of variation fitted by the regression, so it summarizes the anova table. Correlation discards the units of measurement, which limits its usefulness.

Homework: Vocabulary Data

Homework: The following data are from M. E. Smith, (1926), "An investigation of the development of the sentence and the extent of vocabulary in young children." It relates the X=age of children in years to their Y=vocabulary size in words. I would like you to do a regression of Y and X, look closely at what you've done, and comment on what it all means. You should turn in (1) one paragraph of text, (2) linear regression output, (3) at most two plots you find interesting and helpful in thinking about what is special about these data. This is real data, so it is not a "trick question", but it does require some real thought about what makes sense and what is happening.

X=age	Y=vocabulary
0.67	0
0.83	1
1	3
1.25	19
1.5	22
1.75	118
2	272
2.5	446
3	896
3.5	1,222
4	1,540
4.5	1,870
5	2,072
5.5	2,289
6	2,562

Topic: Multiple Regression

- Multiple regression: Uses several predictor variables X₁, X₂,...X_k to fit a single response variable Y.
- **FUEL DATA**: Trying to predict Y = FUEL from X_1 = TAX and a second predictor, X_2 = LICENSES.
- Least squares fit: Multiple regression fits a plane

 $\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{1i} + \hat{\beta}_{2}X_{2i} + \ldots + \hat{\beta}_{k}X_{ki} \text{ making the residuals } Y_{i} - \hat{Y}_{i} \text{ small, in}$ the sense that the sum of the squares of the residuals, namely, $\sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$,

- is minimized.
- **Multiple Correlation**: The multiple correlation, R, is the ordinary correlation between the observed Y_i and the fitted \hat{Y}_i . The square of the multiple correlation, R^2 , is the percent of variation fitted by the regression, that is, regression sum of squares in the ANOVA table divided by the total sum of squares of Y around its mean.
- Fit vs Prediction: Fit refers to how close the model is to the observed data. Predicition refers to how close the model is to new data one might collect. They are not the same. Adding variables, even junk variables, always improves the fit, but the predictions may get better or worse. R² is a measure of fit, not of prediction. We will develop a measure of prediction, C_ρ, later in the course.
- Statistical Model: The model underlying multiple regression says:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki} + \varepsilon_{i}$$

where the ε_i are independent $N(0, \sigma^2)$

The true model is unknown, but the least squares fit is an estimate.

Hypothesis Tests and Confidence Intervals for a Coefficient: Testing a hypothesis about a regression coefficient, say H₀: β₅ = 0, is done using the t-

statistic as in simple regression. Confidence intervals are also done as in simple regression.

- Testing that all coefficients are zero: The F-test from the ANOVA table is used to test H₀: β₁ = β₂ =... = β_k = 0.
- **Residual analysis**: One checks the model by plotting the residuals. The minimum is a plot of residuals against predicted, a boxplot of residuals, and a Normal plot of residuals, as in simple regression.

Topic: General Linear Hypothesis

• What is it? In model,

 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki} + \varepsilon_{i}$ where the ε_{i} are independent $N(0, \sigma^{2})$,

we know how to test a hypothesis about one coefficient, say $H_0: \beta_5 = 0$, (t-test) and we know how to test that all of the variables are unneeded, $H_0: \beta_1 = \beta_2 = ... = \beta_k = 0$ (F-test from regression anova table). The general linear hypothesis says that a particular subset of the coefficients is zero. For example, the hypothesis might say that the last k-J variables are not needed, $H_0: \beta_{J+1} = \beta_{J+2} = ... = \beta_k = 0$.

- Why do this? Generally, a hypothesis expresses an idea. Some ideas need to be expressed using more than one variable. For example, in the FUEL data, the 48 states might be divided into five regions, Northeast, Southeast, Midwest, Mountain, and Pacific, say. Later on, we will see how to code region into several variables in a regression. Testing whether "REGION" matters is testing whether all of these variables can be dropped from the model.
- Comparing Two Models: The test involves comparing two models, a reduced model which assumes the hypothesis is true, and a full model which assumes it is false. To test H₀: β_{J+1} = β_{J+2} =... = β_k = 0, one fits the full model:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki} + \varepsilon_{i}$$

and the reduced model without variables X_{J+1}, \dots, X_k , $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_J X_{Ji} + \varepsilon_i$,

and the test is based on comparing the ANOVA tables for these two models. Details in the textbook.

Topic: Woes of Regression Coefficients

- The phrase, "the woes of regression coefficients" is due to Fred Mosteller and John Tukey in a standard text, *Data Analysis and Regression*. The bulk pack contains another standard reading: George Box's paper "The use and abuse of regression". (The paper is mostly easy to read, but contains some technical material – just skip the technical material. The main points are not technical and not difficult.)
- The issue concerns the interpretation of regression coefficients. The bottom line is that it is hard to interpret regression coefficients. The reason is that whenever you add (or delete) a variable from a regression model, all of the other coefficients change to reflect the added (or deleted) variable. People want (but they can't have) a way of speaking of THE coefficient of a variable, but actually the coefficient of a variable always depends on what other variables are in the model with it. People want to say that β_j is the change in Y expected from a one unit change in X_j, but it simply isn't true. It can't be true, since β_j keeps changing as variables are added or deleted from a model, whereas changing X_j out in the world has nothing to do with which variables I put in the model.
- The bottom line is this: Whenever you hear people say that changing X_j will produce a particular change in Y, and they say they know this solely because they did a regression, you should be a little skeptical. There is more to knowing something like this than just running regressions.

Topic: Transformations

- **Key Idea**: Fit many kinds of curved (i.e., nonlinear) models by transforming the variables and fitting a linear model to the transformed variables.
- Logs. For b>0, the base b log has the property that:

 $y = b^a$ is the same as $\log_b(y) = a$.

Common choices of the base b are b=10, b=2 and b=e=2.71828... for natural logs. Outside high school, if no base is mentioned (e.g., log(y)) it usually means base e or natural logs. Two properties we use often are: log(xy)=log(x)+log(y) and $log(y^a) = a \cdot log(y)$.

- Why transform? (i) You plot the data and it is curved, so you can't fit a line. (ii) The Y's have boundaries (e.g., Y must be >0 or Y must be between 0 and 1), but linear regression knows nothing of the boundaries and overshots them, producing impossible Ŷ's. (iii) The original data violate the linear regression assumptions (such as Normal errors, symmetry, constant variance), but perhaps the transformed variables satisfy the assumptions. (iv) If some Y's are enormously bigger than others, it may not make sense to compare them directly. If Y is the number of people who work at a restaurant business, the Y for McDonald's is very, very big, so much so that it can't be compared to the Y for Genji's (4002 Spruce & 1720 Samson). But you could compare log(Y).
- Family of transformations: Organizes search for a good

transformation. Family is $\frac{Y^{\rho} - 1}{\rho}$ which tends to log(y) as p gets near 0. Often we drop the shift of 1 and the scaling of 1/p, using just $sign(p) \cdot Y^{\rho}$ for $p \neq 0$ and log(y) for p=0. Important members of this family are: (i) p=1 for no transformation or Y, (ii) p=1/2 for \sqrt{Y} , (iii) p=1/3 for $\sqrt[3]{Y}$, (iv) p=0 for log(y), (v) p = -1 for 1/Y.

- Straightening a scatterplot: Plot Y vs X. If the plot looks curved, then do the following. Divide the data into thirds based on X, low, middle, high. In each third, find median Y and median X. Gives you three (X,Y) points. Transform Y and/or X by adjusting p until the slope between low and middle equals the slope between middle and high. Then plot the transformed data and see if it looks ok. You want it to look straight, with constant variance around a line.
- Logit: logit(a) =log{a/(1-a)} when a is between 0 and 1. If the data are between 0 and 1, their logits are unconstrained.
- Picking Curves that Make Sense: Sometimes we let the data tell us which curve to fit because we have no idea where to start. Other times, we approach the data with a clear idea what we are looking for. Sometimes we know what a sensible curve should look like. Some principles (i) If the residuals show a fan pattern, with greater instability for larger Y's, then a log transformation may shift things to constant variance. (ii) If there is a naïve model based on a (too) simple theory (e.g., weight is proportional to volume), then consider models which include the naïve theory as a very special case. (iii) If outcomes Y must satisfy certain constraints (e.g., percents must be between 0% and 100%), consider families of models that respect those constraints.
- Interpretable transformations: Some transformations have simple interpretations, so they are easy to think and write about. Base 2 logs, i.e., log₂(y) can be interpreted in terms of doublings. Reciprocals, 1/Y, are often interpretable if Y is a ratio (like density) or a time. Squares and

square roots often suggest a relationship between area and length or diameter. Cubes and cube roots suggest a relationship between volume and diameter.

• **Transformations to constant variance**: A very old idea, which still turns up in things you read now and then. Idea is that certain transformations – often strange ones like the arcsin of the square root – make the variance nearly constant, and that is an assumption of regression.

Topic: Polynomials

Why fit polynomials? The transformations we talked about all keep the order of Y intact – big Y's have big transformed Y's. Often that is just what we want. Sometimes, however, we see a curve that goes down and comes back up, like a \cup , or goes up and comes back down, like a \cap , and the transformations we looked at don't help at all. Polynomials can fit curves like this, and many other wiggles. They're also good if you want to find the X that maximizes Y, the top point of the curve \cap .

- Quadratic: $y = a + bx + cx^2$ has a \cup shape if c>0 and a \cap shape if c<0 (why?) and is a line if c=0. Top of hill or bottom of valley is at $x = \frac{-b}{2c}$.
- Fitting a Quadratic: Easy put two variables in the model, namely X and X².
- Centering: If X>0, then X is big at the same time X², so these two variables are highly correlated. Often a good idea to center, using X and (X X)² instead of X and X². Fits the same curve, but is more stable as a computing algorithm.
- Orthogonal polynomials: Typically used in anova rather than in regression. Transforms X² so it is uncorrelated with X. Does this by regressing X² on X and using the residuals in place of X².
- **Cubics**: Can fit cubics using X, X^2 and X^3 . Usually don't go beyond cubics. Usually center.
- Polynomials in several predictors: If I have two predictors, say x and w, the quadratic in x and w has squared terms, x² and w², but it adds something new, their crossproduct or interaction, xw:

$$y = a + b \cdot x + c \cdot w + d \cdot x^{2} + f \cdot w^{2} + h \cdot w \cdot x$$

• Are quadratic terms needed? You can judge whether you need several quadratic terms using a general linear hypothesis and its avova table.

Topic: Coded Variables (i.e., Dummy Variables)

- Why use coded variables? Coded or dummy variables let you incorporate nominal data (Philly vs New York vs LA) as predictors in regression.
- **Two categories**: If there are just two categories, say male and female, you include a single coded variable, say C=1 for female and C=0 for male. Fits a parallel line model. If you add interactions with a continuous variable, X, then you are fitting a two-line model, no longer a parallel line model.
- More than Two Categories: If there are 3 categories (Philly vs New York vs LA) then you need two coded variables to describe them (C=1, D=0 for New York; C=0, D=1 for LA; C=0, D=0 for Philly). Such a model compares each group to the group left out, the group without its own variable (here, Philly). When there are more than two categories – hence more than one coded variable – interesting hypotheses often involve several variables and are tested with the general linear hypothesis. Does it matter which group you leave out? Yes and no. Had you left out NY rather than Philly, you get the same fitted values, the same residuals, the same overall F-test, etc. However, since a particular coefficient multiplies a particular variable, changing the definition of a variable changes the value of the coefficient.

Topic: Diagnostics -- Residuals

- Why do we need better residuals?: We look at residuals to see if the model fits ok a key concern for any model. But the residuals we have been looking at are not great. The problem is that least squares works very hard to fit data points with extreme X's unusual predictors so it makes the residuals small in those cases. A data point with unusual X's is called a high leverage point, and we will think about them in detail a little later. A single outlier (weird Y) at a high leverage point can pull the whole regression towards itself, so this point looks well fitted and the rest of the data looks poorly fitted. We need ways of finding outliers like this. We want regression to tell us what is typical for most points we don't want one point to run the whole show.
- The model is:

 $Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki} + \varepsilon_{i}$ where the ε_{i} are independent $N(0, \sigma^{2})$

- By least squares, we estimate the model to be: $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_{1i} + \hat{\beta}_2 X_{2i} + \dots + \hat{\beta}_k X_{ki}$ with residuals $E_i = Y_i - \hat{Y}_i$
- Although the true errors, ε_i have constant variance, var(ε_i) = σ², the same for every unit i, the residuals have different variances, var(E_i) = σ²(1 − h_i) where h_i is called the leverage.
- The standardized residual we like best does two things: (i) it uses the leverages h_i to give each residual the right variance for that one residual, and (ii) it removes observation i when estimating the variance of the residual E_i = Y_i − Ŷ_i for observation i. That is, var(E_i) = σ²(1 − h_i) is

estimated by $\hat{\sigma}_{[-i]}^{2}(1-h_{i})$, where $\hat{\sigma}_{[-i]}^{2}$ is the estimate of the residual variance we get by setting observation i aside and fitting the regression without it.

The residual we like has several names – studentized, deleted, jacknife

 no one of which is used by everybody. It is the residual divided by its
 estimated standard error:

$$r_{[i]} = \frac{E_i}{\sigma_{[-i]}\sqrt{1-h_i}}$$

- Another way to get this residual is to create a coded variable that is 1 for observation i and 0 for all other observations. Add this variable to your regression. The t-statistic for its coefficient equals r_[/].
- We can test for outliers as follows. The null hypothesis says there are no outliers. If there are n observations, there are n deleted residuals r_[/]. Find the largest one in absolute value. To test for outliers at level 0.05, compute 0.025/n, and reject the hypothesis of no outliers if the largest absolute deleted residual is beyond the 0.025/n percentage point of the t-distribution with one less degree of freedom than the error line in the anova table for the regression. (You lose one degree of freedom for the extra coded variable mentioned in the last paragraph.)

Topic: Diagnostics -- Leverage

- Three very distinct concepts: An outlier is an observation that is poorly fitted by the regression it has a response Y that is not where the other data points suggest its Y should be. A high leverage point has predictors, X's, which are unusual, so at these X's, least squares relies very heavily on this one point to decide where the regression plane should go a high leverage point has X's that allow it to move the regression if it wants to. A high influence point is one that did move the regression typically, such a point has fairly high leverage (weird X's) and is fairly poorly fitted (weird Y for these X's); however, it may not be the one point with the weirdest X or the one point with the weirdest Y. People often mix these ideas up without realizing it. Talk about a weird Y is outlier talk; talk about a weird X is leverage talk; talk about a weird Y for these X's is influence talk. We now will measure leverage and later influence.
- Measuring Leverage: Leverage is measured using the leverages *h_i* we encountered when we looked at the variance of the residuals. The leverages are always between 0 and 1, and higher values signify more pull on the regression.
- When is leverage large? If a model has k predictors and a constant term, using n observations, then the average leverage, averaging over the n observations is always $\frac{k+1}{n} = \frac{1}{n} \sum_{i=1}^{n} h_i$. A rule a thumb that works well is that leverage is large if it is at least twice the average, $h_i \ge \frac{2(k+1)}{n}$.
- What do you do if the leverage is large? You look closely. You think. Hard. You find the one or two or three points with $h_i \ge \frac{2(k+1)}{n}$ and you

look closely at their data. What is it about their X's that made the leverage large? How, specifically, are they unusual? Is there a mistake in the data? If not, do the X's for these points make sense? Do these points belong in the same regression with the other points? Or should they be described separately? Regression gives high leverage points a great deal of weight. Sometimes that makes sense, sometimes not. If you were looking at big objects in our solar system, and X=mass of object, you would find the sun is a high leverage point. After thinking about it, you might reasonably decide that the regression should describe the planets and the sun should be described separately as something unique. With the solar system, you knew this before you looked at the data. Sometimes, you use regression in a context where such a high leverage point is a discovery. (If you remove a part of your data from the analysis, you must tell people you did this, and you must tell them why you did it.)

Topic: Diagnostics -- Influence

- What is influence? A measure of influence asks whether observation i *did* move the regression. Would the regression change a great deal if this one observation were removed? Not whether it *could* move the regression that's leverage. Not whether it fits poorly that's an outlier.
- Measures of influence. There are several measures of influence. They are all about the same, but no one has become the unique standard. Two common choices are DFFITS and Cook's Distance. Cook's distance is (almost) a constant times the square of DFFITS, so it makes little difference which one you use. It is easier to say what DFFITS does.
- What is DFFITS? Roughly speaking, DFFITS measures the change in the predicted value for observation i when observation it is removed from the regression. Let \hat{Y}_i be the predicted value for observation i using all the data, and let $\hat{Y}_{i[i]}$ be the predicted value for observation i if we fit the regression without this one observation. Is \hat{Y}_i close to $\hat{Y}_{i[i]}$? If yes, then this observation does not have much influence. If no, then it does have influence. DFFITS divides the difference, $\hat{Y}_i - \hat{Y}_{i[i]}$ by an estimate of the standard error of \hat{Y}_i , so a value of 1 means a movement of one standard error. Recall that $\hat{\sigma}_{[-i]}^2$ is the estimated residual variance when observation i is removed from the regression. Then DFFITS is:

$$DFFITS_i = \frac{\hat{Y_i} - \hat{Y_{i[i]}}}{\hat{\sigma}_{[-i]}\sqrt{h_i}}.$$

DFBETAS: A related quantity is DFBETAS which looks at the standardized change in the regression coefficient β_j when observation i is removed. There is one DFBETAS for each observation and for each coefficient. DFFITS is always bigger than the largest DFBETAS, and there is only one DFFITS per observation, so many people look at DFFITS instead of all k DFBETAS.

Topic: Variable Selection

- What is variable selection? You have a regression model with many predictor variables. The model looks ok you've done the diagnostic checking and things look fine. But there are too many predictor variables. You wonder if you might do just as well with fewer variables. Deciding which variables to keep and which to get rid of is variable selection.
- **Bad methods**. There are two bad methods you should not use. One bad method is to drop all the variables with small t-statistics. The problem is the t-statistic asks whether to drop a variable *providing you keep all the others*. The t-statistic tells you little about whether you can drop two variables at the same time. It might be you could drop either one but not both, and t can't tell you this. Another bad method uses the squared multiple correlation, R^2 . The problem is R^2 always goes up when you add variables, and the size of the increase in R^2 is not a great guide about what to do. Fortunately, there is something better.
- A good method. The good method uses a quantity called C_p which is a redesigned R² built for variable selection. Suppose the model is, as before,

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \beta_{2}X_{2i} + \ldots + \beta_{k}X_{ki} + \varepsilon_{i}$$

where the ε_i are independent $N(0, \sigma^2)$, but now k is large (many predictors) and we think some β 's might be zero. We fit this model and get the usual estimate $\hat{\sigma}^2$ of σ^2 . A submodel has some of the k variables but not all of them, and we name the submodel by the set P of variables it contains. So the name of the model $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_3 X_{3i} + \beta_9 X_{9i} + \varepsilon_i$ is P={1,3,9}, and it has residual sum of squares SSE_{ρ} from the residual line in its Anova table, and p=3 variables plus one constant term or 4 parameters. (Note carefully – I let p=#variables, but a few people let p=#parameters.) We have n observations. Then the strange looking but simple formula for C_{ρ} is: $C_{\rho} = \frac{SSE_{\rho}}{\hat{\sigma}^2} - [n - 2(\rho + 1)]$. Then C_{ρ} compares the model with all variable to the model with just the variables in P and asks whether the extra variables are worth it.

- Using C_p: The quantity C_p estimates the standardized total squared error of prediction when using model P in place of the model with all the variables. We like a model P with a small C_p. If a model P contains all the variables with nonzero coefficients, then C_p tends on average to estimate p+1, the number of variables plus 1 for the constant, so a good value of C_p is not much bigger than p+1. For instance, if C_(1,3,9) = 8, then that is much bigger than p+1=3+1=4, so the model seems to be missing important variables, but if C_(1,3,9,11)=5.1 then that is close to p+1=4+1=5 and smaller than 8, so that model predicts better and might have all important variables.
- Searching: If a model has k variables, then there are 2^k submodels formed by dropping variables, or about a billion models for k=30 variables. There are various strategies for considering these models: forward selection, backward elimination, stepwise, all subsets, best subsets.
- **Cautions**: Variable selection is an exploratory method, one that looks for interesting things, but because it searches so extensively, it may find some things that don't replicate. If we reject hypotheses when P-

value<0.05, then only 1 time in 20 do we reject a true hypothesis. But if we fit billions for regressions, calculating billions of P-values, then we reject many true hypotheses and make many mistakes. The results of variable selection need to be examined with caution avoiding overstatement. A good strategy is to split the sample, perform variable selection on one half, and confirm the results on the other. This is a simple type of cross-validation.

Topic: One Way Analysis of Variance

- What is ANOVA? Anova, or analysis of variance, is the decomposition of data into parts that add back up to the original data, and the summary of the parts in terms of their sizes measured by summing and squaring their numerical entries. At an abstract level, in statistical theory, anova and regression are not really different. In practice, however, they look very different. Most computer programs have separate routines for regression and anova. Center questions, issues and methods arise in anova that don't arise in regression. Anova tends to be used with structured data sets, often from carefully designed experiments, while regression is often used with data that arises naturally. However, by running enough regressions, knowing exactly what you are doing, and putting together the pieces very carefully, you can do even a complex anova using a regression program it's easy to use an anova program. Anova has a nice geometry.
- What is one-way anova? One-way anova is the very simplest case.
 People fall into one of several groups and we want to understand the difference between the groups. Basic questions are: Do the groups differ? (F-test.) If so, how? (Multiple comparisons.) If I anticipate a specific pattern of differences between the groups, is this pattern confirmed by the data? (Contrasts.) Notation: There are I groups, i=1,...,I, and n_i people in group I, with n = n₁+...+n_i people in total. Each person is in just one group and people in different groups have nothing to do with each other. Person j in group i, has response y_{ij}. The

mean response in group i is \overline{y}_{i} and the mean response for everyone is \overline{y}_{i} . The anova decomposition is:

$$y_{ij} = y_{i} + (y_{i} - y_{i}) + (y_{ij} - y_{i})$$

data = (grand mean) + (group difference) + (residual)

Model for One-Way Anova: The model for one-way anova says the observations are Normal with the same variance, are independent of each other, and have different means in the different groups. Specifically: $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$ where the ε_{ij} are iid $N(0, \sigma^2)$ and $0 = \alpha_1 + \alpha_2 + ... + \alpha_i$.

- Do the groups differ? We test the hypothesis that the groups do not differ using the F-ratio from the one-way analysis of variance table. If F is large enough, judged by the F-table, we reject the null hypotheses and conclude there is strong evidence the groups differ. Otherwise, we conclude that we lack strong evidence that the groups differ (which is not the same thing as saying we know for certain they are the same).
- If the groups differ, how do they differ? It is not enough to know the groups differ we need to understand what differences are present. There are two cases: (1) we have no idea what we are looking for, or (2) we have a clear and specific idea what we are looking for. Case 2 is the better case if you know what you are looking for in statistics, then you can find it with a smaller sample size. We handle case 1 using multiple comparisons and case 2 using contrasts, described later. In multiple comparison, every group is compared to every other group. If there are I=10 groups, there are 45 comparisons of two groups, 1 with 2, 1 with 3, ..., 9 with 10. If you did 45 t-tests to compare the groups, rejected for P-

values < 0.05, then you would falsely reject a true hypothesis of no difference in one out of 20 tests. This means that with I=10 groups and 45 comparisons, if the groups are really the same, you expect to get 45x0.05 = 2.25 significant (P-value<0.05) difference by chance alone. That's a problem – a big problem. It means you expect 2 mistakes – you expect to say a treatment worked when it didn't. Gotta do something to prevent this. There are many, many solutions to this problem – there are whole books of multiple comparison procedures. One of the first is due to John Tukey of Princeton. You can think of it as using essentially a tstatistic to compare groups in pairs, but as the number of groups, I, gets bigger, so more tests are being done, the procedure requires a bigger value of the t-statistic before declaring the difference significant. If you did this with I=10 groups and 45 comparisons of two groups, the procedure promises that if the groups are really the same, the chance of a significant difference anywhere in the 45 comparisons is less that 0.05 if you find anything, you can believe it. For example, with just two groups and 30 degrees of freedom, we would reject at the 0.05 level if |t|>2.04, but using Tukey's method with I=10 groups, 45 comparisons, we would reject if |t|>3.41, and if t is that big, then it is unlikely to happen by chance even if you did 45 comparisons.

Planned Contrasts for Specific Hypotheses: Ideally, when you do research, you have a clear idea what you are looking for and why. When this is true, you can build a test tailored to your specific hypothesis. You do this with contrasts among group means. You express your hypothesis using a set of contrast weights you pick, one weight for each group mean, summing to zero: c₁, c₂,..., c₁ with c₁ + c₂+...+c₁ = 0. For instance,

consider a study with I=3 groups, with $n_1 = n_2 = n_3 = 100$ people in each group. The groups are two different drug treatments, A and B, and a placebo control. Then the contrast "drug vs placebo" is:

Contrast: Placebo		
с ₁ -1	$\frac{c_2}{1}$	$\frac{c_3}{1}$

whereas the contrast "drug A vs drug B" is:

Contrast: Placebo	0	0
d ₁	d_2	d ₃
0	1	-1

• The value of contrast applies the contrast weights to the group means,

$$L = \sum_{i=1}^{l} c_i \cdot \overline{y}_{i\bullet}, \text{ so for "Drug vs Placebo" it is } L = -1 \cdot \overline{y}_{1\bullet} + \frac{1}{2} \cdot \overline{y}_{2\bullet} + \frac{1}{2} \cdot \overline{y}_{3\bullet}$$

• The t-test for a contrast tests the null hypothesis $H_0: 0 = \sum_{i=1}^{l} c_i \cdot \alpha_i$. Let

 $\hat{\sigma}^2$ be the residual mean square from the anova table, which estimates σ^2 . The t-statistic is $t = \frac{L}{\sqrt{\hat{\sigma}^2 \cdot \sum_{j=1}^{\frac{C_j^2}{n_j}}}}$ and the degrees of freedom are

from the residual line in the anova table.

• The sum of squares for a contrast is $\frac{L^2}{\sum_{i=1}^{n} c_i^2}$. Two contrasts, c_1, c_2, \dots, c_i

and $d_1, d_2, ..., d_j$ are orthogonal if $0 = \sum_{i=1}^{l} \frac{c_i \cdot d_i}{n_i}$. Example: "Drug vs

Placebo" is orthogonal to "Drug A vs Drug B" because

$$\sum_{i=1}^{l} \frac{c_i \cdot d_i}{n_i} = \frac{-1 \times 0}{100} + \frac{\frac{1}{2} \times 1}{100} + \frac{\frac{1}{2} \times -1}{100} = 0.$$
 When contrasts are orthogonal, the

sum of squares between groups may be partitioned into separate parts, one for each contrast. If there are I groups, then there are I-1 degrees of freedom between groups, and each degree of freedom can have its own contrast. Both of these formulas are mostly used in balanced designs where the sample sizes in the groups are the same, $n_1 = n_2 = ... = n_1$.

Topic: Two Way Analysis of Variance

What is two-way ANOVA? In two-way anova, each measurement is classified into groups in two different ways, as in the rows and columns of a table. In the social sciences, the most common situation is to measure the same unit or person under several different treatments – this is the very simplest case of what is know as repeated measurements. Each person is a row, each treatment is a column, and each person gives a response under each treatment. The two-way's are person and treatment. Some people give higher responses than others. Some treatments are better than others. The anova measures both sources of variation. The units might be businesses or schools or prisons instead of people.

Notation: There are I people, i=1,...,I, and J treatments, j=1,...,J, and person i gives response y_{ij} under treatment j. The mean for person i is

 $\overline{y}_{i} = \frac{1}{J} \sum_{j=1}^{J} y_{ij} \text{ and the mean for treatment j is } \overline{y}_{i} = \frac{1}{J} \sum_{j=1}^{J} y_{ij}, \text{ and the mean of everyone is } \overline{y}_{i}.$ The anova decomposition is: $y_{ij} = \overline{y}_{i} + (\overline{y}_{i} - \overline{y}_{i}) + (\overline{y}_{ij} - \overline{y}_{i}) + (y_{ij} - \overline{y}_{i} - \overline{y}_{i} + \overline{y}_{i}).$

- Anova table: The anova table now has "between rows", "between columns" and "residual", so the variation in the data is partitioned more finely.
- Normal model: The model is y_{ij} = μ + α_i + β_j + ε_{ij} where the errors are independent Normals with mean zero and variance σ². Under this model, F-statistics from the anova table may be used to test the hypotheses of no difference between rows and no difference between columns. Can do multiple comparisons and contrasts using the residual line from the anova table to obtain the estimate σ².

Error Rates When Performing More Than One Hypothesis Test

Table Counts I van Hypotheses				
Accepted or		Rejected null	Total	
	untested null	hypotheses		
	hypotheses			
True null hypotheses	U	V	m_0	
False null	Т	S	m- m ₀	
hypotheses				
Total	m-R=m-(U+T)	R	m	

Table Counts Null Hypotheses

Family-wise error rate: $Pr(V \ge 1)$, the probability of at least one false rejection in m tests.

The family-wise error rate is weakly controlled at $\alpha=0.05$ if $\alpha=0.05 \ge Pr(V \ge 1)$ whenever $m=m_0$, that is, whenever all m null hypotheses are true.

The family-wise error rate is strongly controlled at $\alpha=0.05$ if $\alpha=0.05 \ge Pr(V \ge 1)$ for all values of m₀, that is, no matter how many null hypotheses are true.

Weak control is not enough. Weak control means you are unlikely to find something when there is nothing, but you are still likely to find too much when there is something.

False discovery rate (FDR) is the expected number of false rejections, E(V/R) where E/R=0/0 is defined to be 0 (i.e., no false rejections if no rejections). This is a more lenient standard than the family-wise error rate, rejecting more true hypotheses.

If you do m tests at level α =0.05, you expect to falsely reject 0.05 x m₀ hypotheses, and if all hypotheses are true, this might be as high as 0.05 x m. The expected ratio of false rejections to tests, E(V/m), is called the per comparison error rate.

Example					
Table Counts Null Hypotheses					
Accepted or untested null Rejected null Total hypotheses hypotheses hypotheses					
True null hypotheses	U	V	100		
False null	Т	S	1		
hypotheses					
Total	m-R=m-(U+T)	R	101		

Example

In this example, there are 101 hypotheses and 100 are true. If you test each hypothesis at level α =0.05, you expect 0.05 x 100 = 20 false rejections of true null hypotheses, plus if you are lucky a rejection of the one false null hypothesis, so you expect most rejections to be false rejections.

If you strongly control the family-wise error rate at α =0.05, then the chance of at least one false rejection is at most 5%.

If you weakly control the family-wise error rate at α =0.05, then there are no promises about false rejections in this case, as one null hypothesis is false.

What are adjusted P-values? (e.g. as produced by pairwise.t.test())

A test of null hypothesis H_0 either rejects H_0 or it does not. The level, α , of the test is such that $\alpha \ge \Pr(\text{Reject } H_0)$ when H_0 is true. The P-value is the smallest α such that we reject H₀. This definition of a P-value continues to work with multiple hypothesis testing.

Topic: Factorial Analysis of Variance

• Two Factor Factorial Anova: The simplest case of factorial anova involves just two factors – similar principles apply with more than two factors, but things get large quickly. Suppose you have two drugs, A and B – then "drug" is the first factor, and it has two levels, namely A and B. Suppose each drug has two dose levels, low and high – then "dose" is the second factor, and it too has two levels, low and high. A person gets one combination, perhaps drug B at low dose. Maybe I give 50 people each drug at each level, so I have 200 people total, 100 on A, 100 on B, 100 at low dose, 100 at high dose.

Main effects and interactions: We are familiar with main effects – we saw them in two-way anova. Perhaps drug A is better than drug B – that's a main effect. Perhaps high dose is more effective than low dose – that's a main effect. But suppose instead that drug A is better than drug B at high dose, but drug A is inferior to drug B at low dose – that's an interaction. In an interaction, the effect of one factor changes with the level of the other.

- Anova table: The anova table has an extra row beyond that in two-way anova, namely a row for interaction. Again, it is possible to do contrasts and multiple comparisons.
- More Complex Anova: Anova goes on and on. The idea is to pull apart the variation in the data into meaningful parts, each part having its own row in the anova table. There may be many factors, many groupings, etc.

Some Aspects of R

Script is my commentary to you, Bold Courier is what I type in R. Regular Courier is what R answered.

What is R?

R is a close relative of Splus, but R is available for free. You can download R from

<u>http://cran.r-project.org/</u>. R is very powerful and is a favorite (if not the favorite) of statisticians; however, it is not easiest package to use. It is command driven, not menu driven, so you have to remember things or look them up - that's the only thing that makes it hard. You can add things to R that R doesn't yet know how to do by writing a little program. R gives you fine control over graphics. Most people need a book to help them, and so Mainland & Braun's Data Analysis and Graphics Using R, Cambridge University Press. Abnother book is Dalgaard's Introductory Statistics with R, NY: Springer. Dalgaard's book is better at teaching basic statistics, and it is good if you need a review of basic statistics to go with an introduction to R. R is similar to Splus, and there are many good books about Splus. One is: Venables and Ripley Modern Applied Statistics with S-Plus (NY: Springer-Verlag).

Who should use R?

If compaters terrify you, if they cause insomnia, cold sweats, and anxiety attacks, perhaps you should stay away from R. On the other hand, if you want a very powerful package for free, one you won't outgrow, then R worth a try. If you find you need lots of help to install R or make R work, then R isn't for you. Alternatives for Statistics 500 are JMP-IN, SPSS, Systat, Stata, SAS and many others. For Statistics 501, beyond the basics, R is clearly best.

You need to download R the first time from the webpage above.

You need to get the "Rst500" workspace for the course from <u>http://www-stat.wharton.upenn.edu/</u> going to "Course downloads" and the most recent Fall semester, Statistics 500, or in one step to <u>http://download.wharton.upenn.edu/download/pub/stat/Fall-2006/STAT-500/</u> For Statistics 501, <u>http://stat.wharton.upenn.edu/statweb/course/Spring-2007/stat501/</u>

```
Start R.
From the File Mena, select "Load Workspace".
Select "Rst500"
```

To see what is in a workspace, type ls() or type objects()

> ls()

[1] "fuel"

To display an object, type its name

> fuel							
	ID	state	Fuel	Tax	License	Inc	Road
1	1	ME	541	9.00	52.5	3.571	1.976
2	2	NH	524	9.00	57.2	4.092	1.250
3	3	VT	561	9.00	58.0	3.865	1.586
				•			
				•			
				•			
46	46	WN	510	9.00	57.1	4.476	3.942
47	47	OR	610	7.00	62.3	4.296	4.083
48	48	CA	524	7.00	59.3	5.002	9.794

Fuel is a data, frame,

> is.data.frame(fuel)

[1] TRUE

You can refer to a variable in a data frame as fuelSTax, etc. It returns one column of fuel.

> fuel\$Tax

 [1]
 9.00
 9.00
 7.50
 8.00
 10.00
 8.00
 8.00
 7.00
 7.00
 7.50

 [13]
 7.00
 7.00
 7.00
 7.00
 7.00
 7.00
 7.00
 8.00
 9.00
 9.00

 [25]
 8.50
 9.00
 8.00
 7.50
 8.00
 9.00
 7.50
 8.00
 9.00
 7.50
 8.00
 6.58

 [37]
 5.00
 7.00
 8.50
 7.00
 7.00
 7.00
 7.00
 7.00
 7.00

length () and dim () tell you how big things are. There are 48 states and seven variables.

> length(fuel\$Tax)
[1] 48
> dim(fuel)
[1] 48 7

To get a summary of a variable, type summary (variable)

> summary(fuel\$Tax)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 5.000 7.000 7.500 7.668 8.125 10.000

R has very good graphics. You can make a boxplot with

boxplot(fuel\$Fuel)

or dress it up with

boxplot(fuel\$Fuel,ylab="gallons per person",main="Figure 1: Motor Fuel Consumption")

To learn about a command, type help(command)

help(boxplot)

help(plot)

help(t.test)

help(lm)

Optional Trick

```
It can get tiresome typing fuel$Tax, fuel$Licenses, etc. If you type attach(data.frame) then you don't have to mention the data frame.
Type detach(data.frame) when you are done.
```

01	1	0 7 0					
>	> summary(fuel\$Tax)						
	Min.	lst Qu.	Median	Mean	3rd Qu.	Max.	
	5.000	7.000	7.500	7.668	8.125	10.000	
>	summan	cy(Tax)					
Εı	rror in	n summary	(Tax) :	Object	"Tax" not	found	
>	attach	n(fuel)					
>	summan	ry(Tax)					
	Min.	lst Qu.	Median	Mean	3rd Qu.	Max.	
	5.000	7.000	7.500	7.668	8.125	10.000	
>	<pre>> summary(License)</pre>						
	Min.	lst Qu.	Median	Mean	3rd Qu.	Max.	
	45.10	52.98	56.45	57.03	59.52	72.40	
>	<pre>> detach(fuel)</pre>						

HELP

R contains several kinds of help. Use help (keyword) to get documentation about keyword. > help(boxplot)

Use help("key") to find the keywords that contain "key". The quotes are needed.
> apropos("box")
[1] "box" "boxplot" "boxplot.default"
 "boxplot.stats"

Use help, search ("keyword") to search the web for R functions that you can download related to keyword. Quotes are needed,

> help.search("box")

> help.search("fullmatch")

At <u>http://cran.r-project.org/</u> there is free documentation, some of which is useful, but perhaps not for first-time users. To begin, books are better.

```
Some R
```

```
A variable, "change" in a data frame bloodpressure.
> bloodpressure$change
 [1] -9 -4 -21 -3 -20 -31 -17 -26 -26 -10 -23 -33 -19 -19 -23
It doesn't know what "change" is.
> change
Error: Object "change" not found
Try attaching the data frame
> attach(bloodpressure)
Now it knows what "change" is.
> change
 [1] -9 -4 -21 -3 -20 -31 -17 -26 -26 -10 -23 -33 -19 -19 -23
> mean(change)
[1] -18.93333
> sd(change)
[1] 9.027471
> summary(change)
   Min. 1st Qu. Median Mean 3rd Qu.
                                            Max.
 -33.00 -24.50 -20.00 -18.93 -13.50 -3.00
> stem(change)
  The decimal point is 1 digit(s) to the right of the |
  -3 | 31
  -2 | 663310
  -1 | 9970
  -0 | 943
> hist(change)
> boxplot(change)
> boxplot(change,main="Change in Blood Pressure After
Captopril", ylab="Change mmHg")
> boxplot(change,main="Change in Blood Pressure After
Captopril", ylab="Change mmHg", ylim=c(-40,40))
> abline(0,0,lty=2)
> t.test(change)
        One Sample t-test
data: change
t = -8.1228, df = 14, p-value = 1.146e-06
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
-23.93258 -13.93409
sample estimates:
mean of x
-18.93333
```

Are the Data Normal?

```
> attach(bloodpressure)
> change
[1] -9 -4 -21 -3 -20 -31 -17 -26 -26 -10 -23 -33 -19 -19 -23
> par(mfrow=c(1,2))
> boxplot(change)
> qqnorm(change)
```

A straight line in a Normal quantile plot is consistent with a Normal distribution.

You can also do a Shapiro-Wilk test. A small p-value suggests the data are not Normal.

```
> shapiro.test(change)
```

Shapiro-Wilk normality test

data: change
W = 0.9472, p-value = 0.4821

```
The steps below show what the genorm() function is plotting
```

```
> round(ppoints(change),3)
[1] 0.033 0.100 0.167 0.233 0.300 0.367 0.433 0.500 0.567 0.633
[11] 0.700 0.767 0.833 0.900 0.967
```

The plotting positions in the normal plot:

```
> round(qnorm(ppoints(change)),3)
[1] -1.834 -1.282 -0.967 -0.728 -0.524 -0.341 -0.168 0.000 0.168
[10] 0.341 0.524 0.728 0.967 1.282 1.834
```

ggnorm (change) is short for

> plot(qnorm(ppoints(change)),sort(change))

Here are Normal quantile plots of several Normal and non-Normal distributions.

Can you tell from the plot which are Normal?

- > qqnorm(rnorm(10))
- > qqnorm(rnorm(100))
- > qqnorm(rnorm(1000))
- > qqnorm(rcauchy(100))
- > qqnorm(rlogis(100))
- > qqnorm(rexp(100))

Regression in R

Script is my commentary to you, Bold Courier is what I type in R. Regular Courier is what R answered.

> **ls()**[1] "fuel"

To display an object, type its name

> :	fuel	L					
	ID	state	Fuel	Tax	License	Inc	Road
1	1	ME	541	9.00	52.5	3.571	1.976
2	2	NH	524	9.00	57.2	4.092	1.250
3	3	VT	561	9.00	58.0	3.865	1.586
46	46	WN	510	9.00	57.1	4.476	3.942
47	47	OR	610	7.00	62.3	4.296	4.083
48	48	CA	524	7.00	59.3	5.002	9.794

To do regression, use lm. Im stands for linear model.

To fit Fael = $\alpha + \beta$ Tax + ε , type

> lm(Fuel~Tax)

Call: lm(formula = Fuel ~ Tax)

Coefficients: (Intercept) Tax 984.01 -53.11

To fit Fuel = $\beta_0 + \beta_1$ Tax + β_2 License + ε , type

> lm(Fuel~Tax+License)

Call: lm(formula = Fuel ~ Tax + License)

Coefficients:		
(Intercept)	Tax	License
108.97	-32.08	12.51

```
To see more output, type
> summary(lm(Fuel~Tax))
Call:
lm(formula = Fuel ~ Tax)
Residuals:
                      Median
     Min
                1Q
                                    30
                                             Max
-215.157 -72.269
                     6.744
                                41.284 355.736
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
              984.01 119.62 8.226 1.38e-10 ***
(Intercept)
                           15.48 -3.430 0.00128 **
Tax
               -53.11
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
' 1
Residual standard error: 100.9 on 46 degrees of freedom
Multiple R-Squared: 0.2037, Adjusted R-squared: 0.1863
F-statistic: 11.76 on 1 and 46 DF, p-value: 0.001285
You can save the regression in an object and then refer to it:
> reg1<-lm(Fuel~Tax+License)</pre>
Now the workspace has a new object, namely reg1:
> ls()
[1] "fuel" "reg1"
To see reg1, type its name:
> reg1
Call:
lm(formula = Fuel ~ Tax + License)
Coefficients:
(Intercept)
                       Tax
                                 License
                 -32.08
     108.97
                                   12.51
To get residuals, type
> reg1$residuals
```

This works only because I defined reg1 above. To boxplot residuals, type: > boxplot(reg1\$residuals)

```
To plot residuals against predicted values, type > plot(reg1$fitted.values,reg1$residuals)
```

```
To do a normal plot of residuals, type
```

```
> qqnorm(reg1$residuals)
```

```
To get deleted or jackknife residuals, type > rstudent(reg1)
```

To get leverages or hats, type >hatvalues(reg1)

To get diffits > dffits(reg1)

To get Cook's distance > cooks.distance(reg1)

Clean up after yourself. To remove reg1, type rm(reg1) > ls() [1] "fuel" "reg1" > rm(reg1) > ls() [1] "fuel"

Predictions

Same point estimate, 532.6 gallons, but a very different interval, because the prediction interval has to allow for a new error for the new observation.

Multiple Regression Anova in R

The standard summary output from a linear model in R contains the key elements of the anova table, which are unde*rli*ned. > summary(lm(Fuel~Tax+License)) Call: lm(formula = Fuel ~ Tax + License) Residuals: Min 10 Median 3Q Max -123.177 -60.172 -2.908 45.032 242.558 Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) 108.971 171.786 0.634 0.5291 -32.075 12.197 -2.630 Tax 0.0117 * 2.091 5.986 3.27e-07 *** License 12.515 ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 76.13 on 45 degrees of freedom Multiple R-Squared: 0.5567, Adjusted R-squared: 0.537 F-statistic: 28.25 on 2 and 45 DF, p-value: 1.125e-08 More explicitly, the model lm(Fuel~1) fits just the constant term, and the F test compares that model (with just the constant term) to the model with all the variables (here Tax & License). > anova(lm(Fuel~1),lm(Fuel~Tax+License))

Analysis of Variance Table

Model 1: Fuel ~ 1 Model 2: Fuel ~ Tax + License Res.Df RSS Df Sum of Sq F Pr(>F) 1 47 588366 2 45 260834 <u>2</u> 327532 <u>28.253 1.125e-08</u> ***

Most regression programs present an explicit anova table, similar to that above, rather than just the F-test.

Partial Correlation Example

Here are the first two lines of data from a simulated data set. We are interested in the relationship between y and x2, taking account of x1.

> partialcorEG[1:2,]

	У	xl	x2
1	-3.8185777	-0.8356356	-1.0121903
2	0.3219982	0.1491024	0.0853746

```
Plot the data. Always plot the data.
```

```
> pairs(partialcorEG)
```

```
Notice that y and x2 have a positive correlation.
```

```
The partial correlation is the correlation between the residuals. Notice that y and x2 have a negative partial correlation adjusting for x1.
> cor(lm(y~x1)$residual,lm(x2~x1)$residual)
[1] -0.2820687
```

```
Notice that the multiple regression coefficient has the same sign as the partial correlation.
```

```
> summary(lm(y~x1+x2))
Call:
lm(formula = y ~ x1 + x2)
Residuals:
                   Median
                                30
    Min
             1Q
                                        Max
-1.13326 -0.27423 -0.02018 0.32216 1.07808
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.007177 0.048662 0.147
                                         0.88305
                       0.243833 19.556 < 2e-16 ***
            4.768486
x1
x2
           -0.720948
                     0.248978 -2.896 0.00468 **
_ _ _
Signif. codes:
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
' 1
```

Residual standard error: 0.4866 on 97 degrees of freedom Multiple R-Squared: 0.9816, Adjusted R-squared: 0.9812 F-statistic: 2591 on 2 and 97 DF, p-value: < 2.2e-16

Added Variable Plots

You have fit a model, modl say, $Y = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + \epsilon$ where ϵ are iid $N(0, \sigma^2)$ and now want to ask about adding a new variable, x_{k+1} , to this model.

It can't hurt to plot Y against x_{k+1} . However, that plot does not tell you what x_{k+1} will do in the model above. It could happen that Y increases with x_{k+1} but $\beta_{k+1} < 0$.

The added variable plot uses the idea of regression by stages. In regression by stages, you estimate β_{k+1} by regressing the residuals from mod1 on the residuals of x_{k+1} when regressed on x_1 , ..., x_k . The added variable plot is simply the plot of these two sets of residuals, residuals of Y versus residuals of x_{k+1} . The slope in that plot estimates β_{k+1} . So the added variable plot lets you see what happens when x_{k+1} is added to mod1.

You can calculate the two set of residuals and plot them. That works fine. Or you can use **addedvarplot** in the course workspace.

```
> attach(fuel)
> head(fuel)
  ID state Fuel Tax License
                              Inc Road
1 1
       ME 541 9.0
                       52.5 3.571 1.976
       NH 524 9.0
                       57.2 4.092 1.250
2 2
                       58.0 3.865 1.586
3
  3
           561 9.0
       VT
4 4
       MA 414 7.5
                       52.9 4.870 2.351
5
  5
           410 8.0
                       54.4 4.399 0.431
       RI
                    57.1 5.342 1.333
66
       CN 457 10.0
> mod1<-lm(Fuel~Tax+License)</pre>
> addedvarplot(mod1,Inc)
The same plot is produced directly by:
> plot(lm(Inc~Tax+License)$resid,mod1$resid)
```

ADDED VARIABLE PLOTS IN THE car Package

- > attach(fuel)
- > pairs(cbind(Fuel,Tax,License))
- > library(car)
- > help(avPlots)
- > avPlots(lm(Fuel~Tax+License))
- > avPlots(lm(Fuel~Tax+License+Inc),term=~Inc)
- > avPlots(lm(Fuel~Tax+License+Inc))
- > summary(lm(Fuel~Tax+License+Inc))

car stands for "Companion to Applied Regression". The book, An R Companion to Applied Regression" by John Fox and Sanford Weisberg discusses regression using this package.

Vocabulary Homework

> vocabulary

Age	Vocab
0.67	0
0.83	1
1.00	3
1.25	19
1.50	22
1.75	118
2.00	272
2.50	446
3.00	896
3.50	1222
4.00	1540
4.50	1870
5.00	2072
5.50	2289
6.00	2562
	$\begin{array}{c} 0.83 \\ 1.00 \\ 1.25 \\ 1.50 \\ 1.75 \\ 2.00 \\ 2.50 \\ 3.00 \\ 3.50 \\ 4.00 \\ 4.50 \\ 5.00 \\ 5.50 \end{array}$

> attach(vocabulary)

Fit linear model (a line) and store results in "mod". > mod<-lm(Vocab~Age)

Summary output for mod. > summary(mod)

Call:

lm(formula = Vocab ~ Age)

Residuals:

Min 1Q Median 3Q Max -249.67 -104.98 13.14 78.47 268.25

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) -621.16 74.04 -8.389 1.32e-06 *** Age 526.73 22.12 23.808 4.17e-12 *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 148 on 13 degrees of freedom Multiple R-Squared: 0.9776, Adjusted R-squared: 0.9759 F-statistic: 566.8 on 1 and 13 DF, p-value: 4.170e-12 Plot the data. Does a line look appropriate?
> plot(Age,Vocab,ylim=c(-1000,3000))
> abline(mod)

Plot residuals us predicteds. Is there a pattern?
> plot(mod\$fitted.values,mod\$residuals)

Boxplot residuals. Unusual points? Skewness? > boxplot(mod\$residuals)

Normal plot of residuals. Do the residuals look Normal? (Is it a line?) > qqnorm(mod\$residuals)

Test of the null hypothesis that the residuals are Normal. > shapiro.test(mod\$residuals)

Shapiro-Wilk normality test

data: mod\$residuals
W = 0.9801, p-value = 0.9703

```
General Linear Hypothesis
```

```
> help(anova.lm)
> attach(fuel)
> fuel[1:2,]
  ID state Fuel Tax License Inc Road
        ME 541 9 52.5 3.571 1.976
1 1
2 2
        NH 524
                   9
                       57.2 4.092 1.250
Fit the full model.
> mod<-lm(Fuel~Tax+License+Inc)</pre>
                 Optional step - for your education only.
> anova(mod)
Analysis of Variance Table
Response: Fuel
          Df Sum Sq Mean Sq F value Pr(>F)
           1 119823 119823 27.560 4.209e-06 ***
Tax
          1 207709 207709 47.774 1.539e-08 ***
License
           1 69532 69532 15.992 0.0002397 ***
Inc
Residuals 44 191302
                       4348
Fit the reduced model.
> mod2<-lm(Fuel~Tax)</pre>
> anova(mod2)
                     Optional step - for your education only.
Analysis of Variance Table
Response: Fuel
          Df Sum Sq Mean Sq F value Pr(>F)
           1 119823 119823
                             11.764 0.001285 **
Tax
Residuals 46 468543 10186
Compare the models
> anova(mod2,mod)
Analysis of Variance Table
Model 1: Fuel ~ Tax
Model 2: Fuel ~ Tax + License + Inc
  Res.Df
            RSS Df Sum of Sq F
                                        Pr(>F)
1
      46 468543
      44 191302 2
2
                      277241 31.883 2.763e-09 ***
```

Notice the residual sum of squares and degrees of freedom in the three anova tables!

Polynomial Regression

```
> attach(cars)
Quadratic in size y = \beta_0 + \beta_1 x + \beta_2 x^2
> lm(mpg~size+I(size^2))
Call:
lm(formula = mpg ~ size + I(size^2))
Coefficients:
(Intercept) size I(size<sup>2</sup>)
39.3848313 -0.1485722 0.0002286
Centered quadratic in size y = \beta_0 + \beta_1 x + \beta_2 \{x - mean(x)\}^2
> lm(mpg~size+I((size-mean(size))^2))
Call:
lm(formula = mpg ~ size + I((size - mean(size))^2))
Coefficients:
                (Intercept)
                                                          size I((size -
mean(size))^2)
                 28.8129567
                                                  -0.0502460
0.0002286
Orthogonal Polynomial Quadratic in size
> lm(mpg~poly(size,2))
Call:
lm(formula = mpg ~ poly(size, 2))
Coefficients:
    (Intercept) poly(size, 2)1 poly(size, 2)2
           20.74
                    -24.67 12.33
To gain understanding:
    do all there regressions
    \blacksquare look at t-test for \beta_2
    ■ type poly (size, 2)
    ■ plot poly (size, 2) [, 1] and poly (size, 2) [, 2] against size
```

Centered Polynomial with Interaction

```
> fuel[1:2,]
 ID state Fuel Tax License Inc Road
1 1
        ME 541 9 52.5 3.571 1.976
2 2
        NH 524 9 57.2 4.092 1.250
> attach(fuel)
Construct the squared and crossproduct terms. Alternatives: use "*" or ":" in model formula,
> TaxC<-Tax-mean(Tax)</pre>
> LicC<-License-mean(License)</pre>
> TaxC2<-TaxC*TaxC</pre>
> LicC2<-LicC*LicC</pre>
> TaxLicC<-TaxC*LicC</pre>
> modfull<-lm(Fuel~Tax+License+TaxC2+LicC2+TaxLicC)</pre>
> summary(modfull)
Call:
lm(formula = Fuel ~ Tax + License + TaxC2 + LicC2 + TaxLicC)
Residuals:
        Min
                     1Q
                           Median
                                             3Q
                                                        Max
-121.52425 -51.08809 -0.01205 46.27051 223.28655
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 169.7242 179.6332 0.945 0.3501
           -32.4465 12.2906 -2.640
                                             0.0116 *
Tax
License11.27762.30874.8851.55e-05***TaxC21.31718.66380.1520.8799LicC20.25750.28680.8980.3743TaxLicC-2.50962.7343-0.9180.3640
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 76.42 on 42 degrees of freedom
Multiple R-Squared: 0.5831, Adjusted R-squared: 0.5335
F-statistic: 11.75 on 5 and 42 DF, p-value: 3.865e-07
Test whether the three squared and interaction terms are needed:
> modred<-lm(Fuel~Tax+License)</pre>
> anova(modred,modfull)
Analysis of Variance Table
Model 1: Fuel ~ Tax + License
Model 2: Fuel ~ Tax + License + TaxC2 + LicC2 + TaxLicC
  Res.Df RSS Df Sum of Sq F Pr(>F)
1 45 260834
2
      42 245279 3 15555 0.8879 0.4552
```

Understanding Linear Models with Interactions or Polynomials

NIDA data (DC*MADS) on birth weight of babies in DC and attributes of mom.

> DCBabyCig[1:2,] Age Married CIGS BW 1 17 0 0 2385 2 23 1 0 4175 Age x Cigarettes interaction > AC<-Age*CIGS Model with interaction > lm(BW~Age+CIGS+AC) Call: lm(formula = BW ~ Age + CIGS + AC) Coefficients:

(Intercept)	Age	CIGS	AC
2714.81	13.99	562.66	-28.04
How do you understand	a model with inter-	actions?	

Let's create a new data frame with 6 moms in it. Three moms are 18, three are 35. Some smoke 0, 1 or 2 packs.

```
> new[,1]<-c(18,35,18,35,18,35)
> new[,2]<-c(0,0,1,1,2,2)</pre>
```

```
> new[,2]<-c(0,0,1,1,2,2)
> new[,3]<-new[,1]*new[,2]</pre>
```

- > colnames(new)<-c("Age","CIGS","AC")</pre>
- > new<-data.frame(new)</pre>
- new
 Age CIGS AC
 18 0 0
 35 1 35
 18 0 0
 4 35 1 35
 5 18 0 0
 6 35 1 35

Now, for these six moms, let's predict birth weight of junior. It is usually easier to talk about people than about

coefficients, and that is what this table does: it talks about 6 moms.

> round(cbind(new,predict(lm(BW~Age+CIGS+AC),new,interval="confidence")))

	Age	CIGS	AC	fit	lwr	upr	
1	18	0	0	2967	2865	3068	
2	35	0	0	3204	3073	3336	
3	18	1	18	3024	2719	3330	
4	35	1	35	2786	2558	3013	
5	18	2	36	3082	2474	3691	
6	35	2	70	2367	1919	2814	

Interpretation of an Interaction

> DCBabyCig[1:6,]

	Age	Married	CIGS	BW
1	17	0	0	2385
2	23	1	0	4175
3	25	0	0	3655
4	18	0	0	1855
5	20	0	0	3600
6	24	0	0	2820

```
Age = mother's age
Married, 1=yes, 0=no
CIGS = packs per day, 0, 1, 2.
BW = birth weight in grams
```

> dim(DCBabyCig)

[1] 449 4

> mod<-lm(BW~Age+Married+CIGS+I(Married*CIGS))</pre>

> summary(mod)

Coefficients:

000111010100					
	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	2973.1866	152.5467	19.490	< 2e-16	* * *
Age	0.1699	6.5387	0.026	0.97928	
Married	274.0662	89.2913	3.069	0.00228	* *
CIGS	-88.4957	81.7163	-1.083	0.27941	
I(Married * CIGS)	-415.1501	160.4540	-2.587	0.00999	* *

Residual standard error: 687.8 on 444 degrees of freedom Multiple R-squared: 0.05337, Adjusted R-squared: 0.04484 F-statistic: 6.258 on 4 and 444 DF, p-value: 6.618e-05

Plot the data
> boxplot(BW~Married:CIGS)

A 25 year old mom in all combinations of Married and CIGS. > DCBabyCigInter Age Married CIGS 1 25 0 0 2 25 0 1 2 3 25 0 4 25 1 0 5 25 1 1 6 25 1 2

Predicted birth weights for this mom, with confidence intervals.

> predict(mod,DCBabyCigInter,interval="conf")

fit lwr upr 1 2977.434 2890.180 3064.688 2 2888.938 2738.900 3038.977 3 2800.443 2502.124 3098.761 4 3251.500 3114.163 3388.838 5 2747.854 2476.364 3019.345 6 2244.209 1719.423 2768.995

Let's clean it up, converting to pounds (2.2 pounds per kilogram), and add the predictors:

> pr<-predict(mod,DCBabyCigInter,interval="conf")</pre>

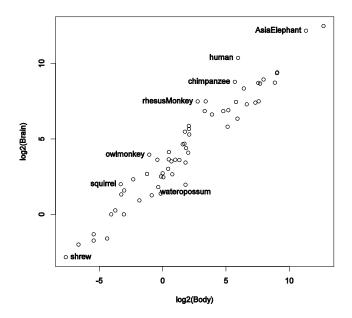
> round(cbind(DCBabyCigInter,2.2*pr/1000),1)

	Age	Married	CIGS	fit	lwr	upr
1	25	0	0	6.6	6.4	6.7
2	25	0	1	6.4	6.0	6.7
3	25	0	2	6.2	5.5	6.8
4	25	1	0	7.2	6.9	7.5
5	25	1	1	6.0	5.4	6.6
б	25	1	2	4.9	3.8	6.1

Using Restricted Cubic Splines (aka Natural Splines) > library(Hmisc) > head(cars) car size mpg group ToyotaC 71.1 33.9 1 1 HondaC 75.7 30.4 1 2 > x<-rcspline.eval(size,nk=3) #Three knots, one additional variable > plot(size,x) #What does the new variable look like? > plot(size,mpg) > m<-lm(mpg~size+x) #Add the new variable to the model. > points(size,m\$fit,pch=16,col="red") #What does the fit look like? > summary(m) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 38.81737 1.91493 20.271 < 2e-16 *** 0.01419 -8.225 7.86e-09 *** size -0.11667 0.14618 0.02642 5.533 7.29e-06 *** х Residual standard error: 2.346 on 27 degrees of freedom Multiple R-squared: 0.8395, Adjusted R-squared: 0.8276 F-statistic: 70.62 on 2 and 27 DF, p-value: 1.877e-11 > x<-rcspline.eval(size,nk=5) #Five knots, three additional variables > m<-lm(mpg~size+x)</pre> > summary(m) Estimate Std. Error t value Pr(>|t|) (Intercept) 46.28095 3.61684 12.796 1.79e-12 *** -0.19689 0.03655 -5.387 1.37e-05 *** 2.17972 0.97629 2.233 0.0348 * size x1-3.52907 1.75277 -2.013 $\mathbf{x}\mathbf{2}$ 0.0550 . 0.90924 1.603 1.45720 0.1216 $\mathbf{x}\mathbf{3}$ Residual standard error: 2.199 on 25 degrees of freedom Multiple R-squared: 0.8694, Adjusted R-squared: 0.8485 F-statistic: 41.61 on 4 and 25 DF, p-value: 1.054e-10 > points(size,m\$fit,pch=16,col="purple")

Reference: Harrell, F. (2015) Regression Modeling Strategies, New York: Springer, section 2.4.5.

Comment: There are many types of splines. Natural splines are linear beyond the final knots, so they wiggle less at the ends.


Dummy Variable in Brains Data

First two rows of "brains" data.

>	brains	S[1:2,]			
	Body	Brain	Animal	Primate	Human
1	3.385	44.500	articfox	0	0
2	0.480	15.499	owlmonkey	1	0

> attach(brains)

```
> plot(log2(Body),log2(Brain))
> identify(log2(Body),log2(Brain),labels=Animal)
```


> mod<-lm(log2(Brain)~log2(Body)+Primate)
> mod

Call: lm(formula = log2(Brain) ~ log2(Body) + Primate)

Coefficients: (Intercept) log2(Body) Primate 2.8394 0.7402 1.6280

log2 (Brain) ~ log2 (Body) + Primate

is $2^{Brain} = 2^{\left(\Omega + \beta \log 2/Body\right) + \gamma Primate + \varepsilon} = (2^{\Omega})(Body^{\beta})(2^{\gamma Primate})(2^{\varepsilon})$

 $2^{1.628Primate} = 3.1$ for a primate, = 1 for a nonprimate

Computing the Diagnostics in the Rat Data

> ratdata[1:3,] BodyWgt LiverWgt Dose Percent Rat3 1766.50.880.4201769.50.880.2501909.01.000.561 1 2 3 > attach(ratdata) > mod<-lm(Percent~BodyWgt+LiverWgt+Dose)</pre> Standardized residuals (first 5) > rstandard(mod)[1:5] 1 2 3 4 5 1.766047 -1.273040 0.807154 -1.377232 -1.123099 Deleted or jackknife or "studentized" residuals (first 5) > rstudent(mod)[1:5] 1 2 3 4 5 1.9170719 -1.3022313 0.7972915 -1.4235804 -1.1337306 dffits (first 5) > dffits(mod)[1:5] 2 3 4 5 1 0.8920451 -0.6087606 1.9047699 -0.4943610 -0.9094531 Cook's distance (first 5) > cooks.distance(mod)[1:5] 1 3 4 5 2 0.16882682 0.08854024 0.92961596 0.05718456 0.20291617 Leverages or 'hats' (first 5) > hatvalues(mod)[1:5] 1 2 3 5 4 0.1779827 0.1793410 0.8509146 0.1076158 0.3915382 > dfbeta(mod)[1:3,] BodyWgt LiverWgt (Intercept) Dose 1 -0.006874698 0.0023134055 -0.011171761 -0.3419002 2 0.027118946 -0.0007619302 -0.008108905 0.1869729 3 -0.045505614 -0.0134632770 0.005308722 2.6932347 > dfbetas(mod)[1:3,] (Intercept) BodyWgt LiverWgt Dose 1 -0.03835128 0.31491627 -0.7043633 -0.2437488 2 0.14256373 -0.09773917 -0.4817784 0.1256122 3 -0.23100202 -1.66770314 0.3045718 1.7471972

High Leverage Example

> t(highlev) t// is transpose - make rows into columns and columns into rows - compact printing 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 100 y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -40 $> mod < -lm(y \sim x)$ > summary(mod) Residuals: 1Q Median Min 30 Max -13.1343 -7.3790 -0.1849 7.0092 14.2034Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 14.57312 2.41264 6.040 8.24e-06 *** -0.43882 0.09746 -4.503 0.000244 *** х ____ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 8.875 on 19 degrees of freedom Multiple **R-Squared: 0.5162**, Adjusted R-squared: 0.4908 F-statistic: 20.27 on 1 and 19 DF, p-value: 0.0002437 > plot(x,y) Puts the fitted line on the plot --- What a dumb model! > abline(mod) 8 ₽ • > ₽ Ŗ ş ŧ The bad guy, #21, doesn't have the biggest residual! > mod\$residual[21] 21 -10.69070 Residuals: Median Min 10 30 Max -13.1343 -7.3790 -0.1849 7.0092 14.2034 But our diagnostics find him! > rstudent(mod)[21] 21 -125137800 > hatvalues(mod)[21] 21 0.9236378 > dffits(mod)[21] 21 -435211362

Max.

Outlier Testing

Use the Bonferroni inequality with the deleted/jackknife/"studentized" residuals.

```
Example uses random data - should not contain true outliers
```

```
> x<-rnorm(1000)</pre>
> y<-rnorm(1000)</pre>
> plot(x,y)
> summary(lm(y~x))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.005469 0.031685 -0.173 0.863
х
            -0.044202 0.031877 -1.387
                                             0.166
```

Residual standard error: 1.002 on 998 degrees of freedom Multiple R-Squared: 0.001923, Adjusted R-squared: 0.0009228 F-statistic: 1.923 on 1 and 998 DF, p-value: 0.1659

```
Look at the deleted residuals (from rstudent)
```

> summary(rstudent(lm(y~x))) Min. 1st Qu. Median Mean 3rd Qu. -3.189e+00 -6.596e-01 2.186e-02 -7.077e-06 6.517e-01 3.457e+00

The big residual in absolute value is 3.457. Is that big for the biggest of 1000 residuals?

The pt(value,df) command looks up value in the t-table with df degrees of freedom, returning Pr(t<value). You need the other tail, Pr(t>value), and you need to double it for a 2-tailed test. The degrees of freedom are one less than the degrees of freedom in the error for the regression, here 997.

> 2*(1-pt(3.457,997)) [1] 0.0005692793

This is uncorrected p-value. Multiply by the number of tests, here 1000, to correct for multiple testing. (It's an inequality, so it can give a value bigger than 1.) > 1000* 2*(1-pt(3.457,997)) [1] 0.5692793

As this is bigger than 0.05, the null hypothesis of no outliers is not rejected - it is plausible there are no outliers present.

```
IS WYOMING AN OUTLIER?
> attach(fuel)
> dim(fuel)
[1] 48 7
> mod<-lm(Fuel~Tax+License)</pre>
> which.max(abs(rstudent(mod)))
40
40
> fuel[40,]
  ID state Fuel Tax License Inc Road
40 40 WY 968 7 67.2 4.345 3.905
> rstudent(mod)[40]
     40
3.816379
> wy<-rep(0,48)</pre>
> wy[40]<-1
> wy
> summary(lm(Fuel~Tax+License+wy))
Call:
lm(formula = Fuel ~ Tax + License + wy)
Residuals:
    Min 1Q Median
                         3Q
                                 Max
-122.786 -55.294 1.728 46.621 154.557
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 198.651 152.405 1.303 0.19920
          -30.933
                    10.696 -2.892 0.00593 **
Tax
                     1.894 5.645 1.12e-06 ***
License
           10.691
          267.433
                    70.075 3.816 0.00042 ***
wy
_ _ _
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 66.74 on 44 degrees of freedom
Multiple R-Squared: 0.6669, Adjusted R-squared: 0.6442
F-statistic: 29.37 on 3 and 44 DF, p-value: 1.391e-10
> 0.05/48
[1] 0.001041667
> 0.00042<=0.001041667
[1] TRUE
```

Testing Whether a Transformation of Y is Needed

Tukey's One Degree of Freedom for Nonadditivity

Tukey (1949) proposed testing whether a transformation of y is needed in the model $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_k x_k + \varepsilon \quad \varepsilon \sim \text{iid } N(0, \sigma^2)$ $(\hat{y} - \overline{y})^2$

by adding a scaled centered version of \hat{y}^2 to the model, specifically $\frac{(\hat{y} - \overline{y})^2}{2\overline{y}}$; see

Atkinson (1985, p. 157). The function tukeyldf(mod) in the class workspace does this, but you could easily do it yourself.

```
> mod<-lm(BW~Age+Married+CIGS)</pre>
> summary(mod)
Call:
lm(formula = BW ~ Age + Married + CIGS)
Residuals:
Min 1Q Median 3Q Max
-2408.30 -358.49 99.69 453.34 1952.79
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)2936.618152.85919.211< 2e-16</th>***Age2.5576.5150.3920.69488Married200.61585.1982.3550.01897*CIGS-196.64470.665-2.7830.00562**
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 692.2 on 445 degrees of freedom
Multiple R-squared: 0.0391, Adjusted R-squared: 0.03262
F-statistic: 6.036 on 3 and 445 DF, p-value: 0.0004910
> boxplot(mod$resid)
> qqnorm(mod$resid)
> shapiro.test(mod$resid)
         Shapiro-Wilk normality test
data: mod$resid
W = 0.9553, p-value = 1.996e-10
> plot(mod$fit,mod$resid)
> lines(lowess(mod$fit,mod$resid))
```

To do the test, add the transformed variable to the model and look at its t-statistic. > summary(lm(BW~Age+Married+CIGS+tukeyldf(mod)))

```
Call:
lm(formula = BW ~ Age + Married + CIGS + tukey1df(mod))
Residuals:
    Min 1Q Median 3Q
                                    Max
-2301.3 -334.5 107.7 420.8 1981.2
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 2962.751 151.775 19.521 < 2e-16 ***
Aqe
               0.508 6.494 0.078 0.93769
Married104.75090.3661.1590.24701CIGS-489.699120.693-4.0575.86e-05***tukey1df(mod)31.50710.5672.9820.00302**
_ _ _
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 686.2 on 444 degrees of freedom
Multiple R-squared: 0.05796, Adjusted R-squared: 0.04947
F-statistic: 6.83 on 4 and 444 DF, p-value: 2.428e-05
```

Box - Cox Method

An alternative approach is due to Box and Cox (1964).

- > library(MASS)
- > help(boxcox)
- > boxcox(mod)

Andrews, D. F. (1971) A note on the selection of data transformations. Biometrika, 58, 249-254.

Atkinson, A. C. (1985) Plots, Transformations and Regression. NY: Oxford. Box, G. E. P. and Cox, D. R. (1964) An analysis of transformations (with discussion). Journal of the Royal Statistical Society B, 26, 211–252.

Tukey, J. W. (1949) One degree of freedom for nonadditivity. *Biometrics*, 5, 232-242. Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.

```
Transformations in the car package
> attach(cars)
> plot(size,mpg)
> library(car)
This is looking for a transformation of size that would
improve the fit. Because y=mpg is not transformed, only
x=size, the procedure can compare residual sums of squares
of y (RSS) for different transformations of x. Here,
lambda is the power transformation, what we called p in
class.
> invTranPlot(mpg~size)
     lambda
                 RSS
1 -1.262328 123.4974
2 -1.000000 126.3604
3 0.000000 192.1809
4 1.000000 317.0362
It likes the -1.26 power of x as a transformation, but -1
and -1.5 are in the confidence interval.
> invTranEstimate(size,mpg)
Ślambda
[1] -1.262328
$lowerCI
[1] -1.737292
$upperCI
[1] -0.8237128
This is trying to transform y=mpg, not x=size. It uses the
Box-Cox likelihood method. It likes y^(-0.99) or
approximately 1/y.
> summary(powerTransform(lm(mpg~size)))
bcPower Transformation to Normality
   Est.Power Std.Err. Wald Lower Bound Wald Upper Bound
Υ1
     -0.9878
               0.5553
                               -2.0763
                                                 0.1007
Likelihood ratio tests about transformation parameters
                            LRT df
                                           pval
LR test, lambda = (0) 3.194518 1 0.0738855550
LR test, lambda = (1) 12.478121 1 0.0004117462
A graphical version.
> boxCox(lm(mpg~size))
```

The car package has an alternative to Tukey's test for a transformation.

```
Atkinson' method
> v<-boxCoxVariable(mpg)</pre>
> summary(lm(mpg~size+v))
Call:
lm(formula = mpg ~ size + v)
Residuals:
   Min
            1Q Median
                          30
                                   Max
-4.3645 -1.3910 0.0462 1.0028 6.4195
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 76.651791 9.132471 8.393 5.27e-09 ***
          -0.033455 0.004324 -7.737 2.55e-08 ***
size
v
            2.519663 0.486271 5.182 1.87e-05 ***
Andrews/Tukey method
> summary(lm(mpg~size+tukey1df(md)))
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 28.812957 1.008748 28.56 < 2e-16 ***
                        0.004508 -11.15 1.32e-11 ***
            -0.050246
size
tukey1df(md) 5.577240 1.117584 4.99 3.12e-05 ***
___
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `
1
Residual standard error: 2.471 on 27 degrees of freedom
Multiple R-squared: 0.8218, Adjusted R-squared: 0.8087
F-statistic: 62.28 on 2 and 27 DF, p-value: 7.686e-11
References:
For Tukey's method and related methods
Andrews, D. F. (1971) A note on the selection of data
transformations. Biometrika 58, 249-254.
For the method in the car package:
Atkinson, A. C. (1973) Testing transformations to
Normality. JRSS-B 473-479.
```

Calculating C_P for the Cathedral Data

```
> attach(cathedral)
> mod<-lm(length~height+gothic+GH)</pre>
> summary(mod)
Call:
lm(formula = length ~ height + gothic + GH)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 241.833 336.471 0.719 0.480
height
             3.138
                       4.506 0.696
                                        0.494
gothic
          -204.722 347.207 -0.590 0.562
             1.669
GH
                       4.641 0.360 0.723
Residual standard error: 79.11 on 21 degrees of freedom
Multiple R-Squared: 0.5412, Adjusted R-squared: 0.4757
F-statistic: 8.257 on 3 and 21 DF, p-value: 0.0008072
> drop1(lm(length~height+gothic+GH),scale=79.11^2)
Single term deletions
Model:
length ~ height + gothic + GH
scale: 6258.392
     Df Sum of Sq RSS
                            Ср
<none> 131413 3.9979
height 1 3035 13112 1
gothic 1 2176 133589 2.3455
1 810 132223 2.1273
> drop1(lm(length~height+gothic),scale=79.11^2)
Single term deletions
Model:
length ~ height + gothic
scale: 6258.392
     Df Sum of Sq RSS
                             Ср
          132223 2.1273
<none>
height 1 119103 251326 19.1582
gothic 1 37217 169440 6.0740
```

Variable Selection

Highway data. First two rows of 39 rows. More details in the Variable Selection section of this balkpack. > highway[1:2,]

	ID	rate	len	adt	trks	slim	lwid	shld	itg	sigs	acpt	lane	fai	pa	ma
1	1	4.58	4.99	69	8	55	12	10	1.20	0	4.6	8	1	0	0
2	2	2.86	16.11	73	8	60	12	10	1.43	0	4.4	4	1	0	0

Highway data has 39 rows, 15 columns, of which y=rate, and columns 3 to 15 or 3:15 are predictors. Want to select predictors. > dim(highway)

```
[1] 39 15
```

```
> attach(highway)
```

To use "leaps" for best subsets regression, need to get it from the library. To get documentation, type help!
> library(leaps)
> help(leaps)

Easiest if you put the x's in a separate variable. These are columns 3:15 of highway, including all the rows. > x<-highway[,3:15]

First three rows of 39 rows of x. Notices that the first two columns of highway are gone.

> x[]	1:3,]							•						
	len	adt	trks	slim	lwid	shld	itg	sigs	acpt	lane	fai	pa	ma		
1 4	.99	69	8	55	12	10	1.20	0	4.6	8	1	0	0		
2 16	.11	73	8	60	12			0							
39	.75	49	10	60	12	10	1.54	0	4.7	4	1	0	0		
There a > din [1] > 2^: [1]	m(x) 39 1 13	.3	ors, kence	2 ¹³ = 8,	192 possil	ble models	e formed b	hy inclading	r each var	viable or n	not,				
				ictors; len	= length	of segme.	nt,, sl	im = speed	l limit,,	, acpt = n	umber i	of acci	ess points	, per mile	· ···
> CO		•	•		alcall	alim			-hld"	"ital	и и.		a" "o	ant "	
				a"''		STTU	ι. ΤΜ.	id" ":	31110	TLG		sta	5 " a	cpt	
Tain	-	гат	P	<i>.</i>	ma										
A quick	and eas	sy, bat	not very	complete,	answer is	obtained	from regs	subsets, 1	Here, it g	ives the b	est mod	'el wit	ik 1 varia	ble, the	best
, with 2 v	ariable	s, etc.	Look for	the *'s.	The bes	t 3 varial	ble model	is len, slii	n, acpt.						
> su	mmar	y(re	egsub	sets()	κ=x,y=	=rate))		,						
1 sul	bset	s of	E eacl	n size	e up t	to 8	Sele	ction	Algo	cithm	: exl	hau	stive	1	
								ita							

				len	aċ	lt	tr	ks	s]	im	lw	vid	sh	ld	it	g	sj	lgs	а	cpt	la	ne	fa	i	р	a	ma	ì
1	(1)	" "	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	* "	"	"	"	"	"	"	"	"
2	(1)	" * "	"	"	"	"	"	"	"	"	"	"	"	"	"	"	"	* "	"	"	"	"	"	"	"	"
3	(1)	" * "	"	"	"	"	" 1	. 11	"	н	"	н	"	"	"	"	"	* "	"	"	"	"	"	"	"	"
4	(1)	" * "	"	"	"	"	" 1	e 11	"	"	"	"	"	"	" 1	k 11	"	* "	п	"	"	"	"	"	"	"
5	(1)	" * "	"	"	"	"	11 4	e 11	"	"	"	"	"	"	11 4	k 11	"	* "	"	"	"	"	"	* "	"	"
б	(1)	" * "	"	"	" *	. 11	11 4	e 11	"	"	"	"	"	"	11 4	k 11	"	* "	"	"	"	"	"	* "	"	"
7	(1)	" * "	"	"	" *	. 11	" 1	. 11	"	н	"	н	"	"	" 1	k 11	"	* "	"	"	"	"	"	* "	" 1	t II
8	(1)	" * "	"	"	" *	. 11	" 1	. 11	"	н	"	н	w *	. 11	" 1	k 11	"	* "	"	"	"	"	"	* "	" 1	t II

To get the two best models of each size, type:

> summary(regsubsets(x=x,y=rate,nbest=2))

Statistics 500 Bulk Pack - 90 -

Variable Selection, Continued

Leaps does "best subsets regression". Here, x contains the predictors of y=rate. If you don't tell it the variable names, it uses 1, 2, ... mod<-leaps(x,rate,names=colnames(x))

The output from leaps, here "mod", has four parts, "which", "label", "size" and "Cp".

nary(moo	1)	
Length	Class	Mode
1573	-none-	logical
14	-none-	character
121	-none-	numeric
121	-none-	numeric
	Length 1573 14 121	14 -none- 121 -none-

You refer to "which" for "mod" as "mod Swhich", etc. Also mod Ssize, mod SCP.

The part, modSwhich says which variables are in each model. It reports back about 121 models, and all 13 variables. > dim(mod\$which) [1] 121 13

Here are the first 3 rows or models in modSwhich. The first model has only acpt, while the second has only slim. > modSwhich[1:3,]

len adt trks slim lwid shld itg sigs acpt lane fai pa ma 1 FALSE F

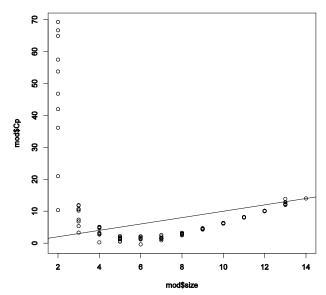
Here are the last 3 rows or models in mod&which. The last model has all 13 variables.

> mod\$which[119:121,]

Here are the sizes of the 121 models. A 1-variable model has size 2, for constant-plus-one-slope. A 2-variable model has size 3. The final model, #121, with all 13 variables has size 14.

> mod\$size [1] 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 [25] 4 4 4 4 4 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 [121] 14

These are the C_p values for the 121 models.


> round(mod\$Cp,2)

 $\begin{bmatrix} 1 \end{bmatrix} 10.36 \ 20.98 \ 36.13 \ 41.97 \ 46.79 \ 53.77 \ 57.48 \ 64.90 \ 66.67 \ 69.28 \ 3.31 \ 5.35 \\ \begin{bmatrix} 13 \end{bmatrix} \ 6.82 \ 7.37 \ 10.21 \ 10.59 \ 10.64 \ 10.68 \ 11.78 \ 11.93 \ 0.24 \ 2.68 \ 2.90 \ 3.04 \\ \begin{bmatrix} 25 \end{bmatrix} \ 3.24 \ 4.72 \ 4.88 \ 4.99 \ 5.05 \ 5.10 \ 0.49 \ 0.56 \ 1.21 \ 1.26 \ 1.33 \ 1.39 \\ \begin{bmatrix} 37 \end{bmatrix} \ 1.59 \ 1.63 \ 1.97 \ 2.22 \ -0.38 \ 1.17 \ 1.34 \ 1.51 \ 1.60 \ 2.00 \ 2.00 \ 2.00 \\ \begin{bmatrix} 49 \end{bmatrix} \ 2.05 \ 2.15 \ 0.88 \ 1.33 \ 1.33 \ 1.52 \ 1.54 \ 1.58 \ 1.61 \ 1.62 \ 2.08 \ 2.54 \\ \begin{bmatrix} 61 \end{bmatrix} \ 2.45 \ 2.73 \ 2.74 \ 2.82 \ 2.82 \ 2.87 \ 2.88 \ 3.18 \ 3.19 \ 3.23 \ 4.27 \ 4.33 \\ \begin{bmatrix} 73 \end{bmatrix} \ 4.36 \ 4.43 \ 4.45 \ 4.45 \ 4.45 \ 4.59 \ 4.67 \ 4.69 \ 6.14 \ 6.15 \ 6.16 \ 6.23 \\ \begin{bmatrix} 85 \end{bmatrix} \ 6.24 \ 6.26 \ 6.26 \ 6.30 \ 6.32 \ 6.32 \ 8.02 \ 8.07 \ 8.12 \ 8.12 \ 8.14 \ 8.14 \\ \\ \begin{bmatrix} 97 \end{bmatrix} \ 8.14 \ 8.15 \ 8.16 \ 8.17 \ 10.02 \ 10.02 \ 10.02 \ 10.06 \ 10.07 \ 10.10 \ 10.12 \ 10.12 \\ 10.12 \ 10.12 \ 10.12 \\ \\ \begin{bmatrix} 109 \end{bmatrix} \ 10.13 \ 10.14 \ 12.01 \ 12.01 \ 12.01 \ 12.05 \ 12.10 \ 12.14 \ 12.32 \ 12.76 \ 12.83 \ 13.85 \\ \\ \begin{bmatrix} 121 \end{bmatrix} \ 14.00 \ 4$

Variable Selection, Continued

This is the C_p plot.
> plot(mod\$size,mod\$Cp)
> abline(0,1)

Cp Plot: Want small Cp. Want Cp near/below mod\$size

There is one pretty good 2 variable model (size=3), with C_p near the x=y line, and one very good 3 variable model (size=4), with C_p way below the line. The best model has 5 variables (size =6) but is only trivially better than the 3 variable model. \vec{R} is highest for the 14 variable model, but chances are it won't predict as well as the 3 variable model.

Let's put together the pieces.

> join<-cbind(mod\$which,mod\$Cp,mod\$size)</pre>

Let's look at the 3 variable models (size=4). The best has $C_p = 0.236$ and variables len, slim, and acpt. > join[mod\$size==4.1]

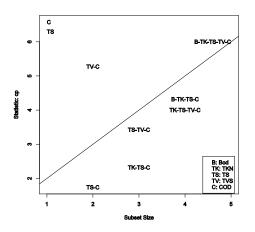
/	len adt trks slim lwid shld itg sigs acpt lane fai pa ma														
	len	adt	trks	slim	lwid	shld	itg	sigs	acpt	lane	fai	pa	ma		
3	1	0	0	1	0	0	0	0	1	0	0	0	0	0.2356971 4	ł
3	0	0	1	1	0	0	0	0	1	0	0	0	0	2.6805672 4	ł
3	1	0	0	0	0	0	0	1	1	0	0	0	0	2.8975068 4	ł
3	1	0	0	0	0	1	0	0	1	0	0	0	0	3.0404482 4	ł
3	1	0	1	0	0	0	0	0	1	0	0	0	0	3.2366902 4	ł
3	1	0	0	0	1	0	0	0	1	0	0	0	0	4.7193511 4	ł
3	0	0	0	1	0	0	0	1	1	0	0	0	0	4.8847460 4	ł
3	1	0	0	0	0	0	0	0	1	0	0	1	0	4.9933327 4	ł
3	1	0	0	0	0	0	0	0	1	1	0	0	0	5.0489720 4	ł
3	1	1	0	0	0	0	0	0	1	0	0	0	0	5.1013513 4	Ł

The full model has $C_p = 14$.

> join[mod\$size==14,]

len	adt	trks	slim	lwid	shld	itg	sigs	acpt	lane	fai	. pa	a ma		
1	1	1	1	1	1	1	1	1	1	1		1 1	14	14
Cp thinks	that t	he 14 va	riable mo	ode <i>l will</i>	have square	d erri	ores 59 t	times grea	nter than	the 3	variable	model with	len, slim,	and acpt.
> 14/0	0.235	56971												
[1] [

[1] 59.39827


A key problem is that variable selection procedures overfit. Need to cross-validate!

Variable Selection, Continued (O2Uptake Example) Load libraries > library(leaps) > library(car) > O2Uptake[1:3,] Day Bod TKN TS TVS COD O2UP LogO2Up 1 0 1125 232 7160 85.9 8905 36.0 1.5563 2 7 920 268 8804 86.5 7388 7.9 0.8976 3 15 835 271 8108 85.2 5348 5.6 0.7482 > dim(O2Uptake) [1] 20 8 Find best 2 models of each size . > mod<-regsubsets(x=02Uptake[,2:6],y=02Uptake\$Log02Up,nbest=2)</pre> > summary(mod) $2 \ \text{subsets}$ of each size up to $5 \$ Selection Algorithm: exhaustive Bod TKN TS TVS COD п (1)" . . . "*" " 1 (2) п п п " * " 1 2 (1) н п "*" п "*" 2 (2) п п " * 3 (1 " *) 3 (2) п п 4 (1) 4 2) (1) "*" 5 " * " " * " " * " " * " (

C, plot

> subsets(mod,stat="cp")

> abline(1,1)

PRESS (and writing little programs in R)

We have seen many times in many ways that ordinary residuals, say E; tend to be too small, because 4; was used in fitting the model, so the model is too close to 4;. Predicting 4; having fitted the model using 4; is called "in-sampleprediction," and it tends to suggest that a model is better than it is, because it saying you are making progress getting close to your current 4;'s, even if you could not do well in predicting a new 4;.

If you left i out of the regression, and tried to predict 4; from the regression without i, the error you would make is:

$$Y_i - Y_{i[i]} = V_i \text{ say.}$$

Here, V; is an "out-of-sample prediction," a true effort to predict a "new" observation, because i did not get used in fitting this equation. It gives me a fair idea as to how well a model can predict an observation not used in fitting the model.

The predicted error sum of squares or PRESS is

PRESS =
$$\Sigma V_i^2$$
.

It turns out that $V_i = E/(1-h_i)$ where E_i is the residual and h_i is the leverage or hatvalue.

```
> fuel[1:2,]
   ID state Fuel Tax License Inc Road
1 1 ME 541 9 52.5 3.571 1.976
2 2 NH 524 9 57.2 4.092 1.250
> attach(fuel)
> modMAX<-lm(Fuel~Tax+License+Inc+Road)</pre>
```

These are the out of sample prediction errors or V_i 's: > V<-modMAX\$residual/(1-hatvalues(modMAX))

```
Let's look at Wyoming, W4. It's residual is about 235 gallons:

> modMAX$residual[state=="WY"]

40

234.9472

but it's out of sample prediction error is about 26 gallons larger:

> V[state=="WY"]

40

260.9721
```

PRESS (and writing little programs in R), continued

PRESS is the sum of the squares of the V; > sum(V^2) [1] 235401.1

How does PRESS compare to R^2 ? Well R^2 is an in-sample measure, while press is an out-of-sample measure. For modMAX, R^2 is:

> summary(modMAX)\$r.squared
[1] 0.6786867

Let's take Road out of the model, and see what happens to R^2 and PRESS.

```
> modSmall<-lm(Fuel~Tax+License+Inc)</pre>
```

```
> summary(modSmall)$r.squared
[1] 0.6748583
So R<sup>2</sup> went down, "got worse," which it always does when you delete variables;
> Vsmall<-modSmall$residual/(1-hatvalues(modSmall))
> sum(Vsmall^2)
[1] 229998.9
however, PRESS went down too, or "got better." In other words, adding Road to the model makes the residuals
```

smaller, as adding variables always does, but it makes the prediction errors bigger. Sometimes adding a variable makes prediction errors smaller, sometimes it makes them bigger, and PRESS tells which is true in your model.

You could compute PRESS as above each time you fit a model, but it is easier to add a little program to R. Here is how you write a program called PRESS that computes PRESS.

```
> PRESS<-function(mod){</pre>
```

+ V<-mod\$residual/(1-hatvalues(mod))

```
+ sum(V^2)
```

```
If you type in the name of your program, here PRESS, it prints the program for you to look at. > PRESS
```

```
function(mod){
    V<-mod$residual/(1-hatvalues(mod))
    sum(V^2)}</pre>
```

Your new program will compute PRESS for you:

```
> PRESS(modMAX)
[1] 235401.1
> PRESS(modSmall)
[1] 229998.9
```

Variance Inflation Factor (VIF)

Need library DAAG. You may have to install it the first time. > library(DAAG) > fuel[1:2,] ID state Fuel Tax License Inc Road 1 1 ME 541 9 52.5 3.571 1.976 2. 2. NH 524 9 57.2 4.092 1.250 > attach(fuel) Run a regression, saving results. > mod<-lm(Fuel~Tax+License+Inc+Road)</pre> Here are the VIF's > vif(mod) Tax License Inc Road 1.6257 1.2164 1.0433 1.4969 You can convert the VIF's to R^3 > 1-1/vif(mod)Tax License Inc Road 0.38488036 0.17790201 0.04150292 0.33195270

This says: If you predict Tax from License, Inc and Road, the R^2 is 0.3849. You could do the regression and get the same answer; see below.

> summary(lm(Tax~License+Inc+Road)) Call: lm(formula = Tax ~ License + Inc + Road) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 11.14672 1.35167 8.247 1.79e-10 *** -0.05791 0.02058 -2.814 0.00728 ** License Inc 0.15455 0.19881 0.777 0.44109 0.03232 -4.621 3.34e-05 *** -0.14935 Road

Residual standard error: 0.7707 on 44 degrees of freedom <u>Multiple R-Squared: 0.3849</u>, Adjusted R-squared: 0.3429 F-statistic: 9.177 on 3 and 44 DF, p-value: 7.857e-05

Spjotvoll's Method in Variable Selection

The maximum model has variables $\{1,2,\ldots,k\}$, $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon$ where the errors ϵ are independent and $N(0,\sigma^2)$. Suppose that T is the true model, where T is a subset of $\{1,2,\ldots,k\}$. That is, T is the model with exactly the nonzero $\beta_j s$, so $\beta_j = 0$ if and only if j is not in T. We could do a general linear hypothesis F-test to test model T against the maximum model, and if we did just this one test, the chance that we would falsely reject model T at level $\alpha=0.05$ would be 5%. The problem is that we don't know T, so we end up testing many models, and might make many mistakes in all those tests.

Spjotvoll (1977) defines an inadequate model as any model that omits a variable in T, and an adequate model as any model that includes all of the variables in T, perhaps including some extra variables whose coefficients are 0. If k=5 and T= $\{1,2\}$, then $\{1,2\}$ and $\{1,2,3\}$ are adequate models, but $\{1,3\}$ and $\{2,3,4,5\}$ are inadequate models. Spjotvoll wants to reject some models as inadequate. He is not worried about having too many variables, and is only worried about omitting a needed variable.

Spjotvoll (1977) declares a model Q to be inadequate at level α =0.05 if and only if the F-test rejects both Q and every model contained in Q. With k=5, to reject Q={1,3} as inadequate, you would have to reject Q={1,3}, and also {1}, {3} and {}, where {} is the model with no variables, that is, {} is y = β_0 + ϵ . So to reject Q={1,3}, four F-tests have to reject α =0.05. A different way of saying the same thing is that the maximum of the four p-values must be less than or equal to α =0.05; that is, the maximum of the F-test p-values for {1,3}, {1}, {3}, and {} must be less than or equal to 0.05. The chance that Spjotvoll's makes at least one mistake, saying that an adequate model is inadequate, is α =0.05, despite doing lots of tests.

It is easy to see why this works. Model Q is adequate if and only if the true model T is a subset of Q, possibly T=Q; that's the definition of "adequate". Suppose Q is adequate, so it contains (or equals) T. To declare Q inadequate at the 0.05 level, you have to reject every model formed as a subset of Q - that's Spjotvoll's method but as T is one of those subsets, you have to reject T, and the chance that the F-test falsely rejects the true model T is $\alpha {=} 0.05.$

Instead of focusing on α =0.05, we could do this for any α in just the same way. We can define an adjusted p-value for model Q as the maximum F-test p-value for all of the models that are subsets of Q, including Q itself and the empty model. This adjusted p-value rejects Q as inadequate at level α if and only if the adjusted p-value is at most α .

Spjotvoll's Method in Variable Selection, continued.
> attach(02Uptake)
> y<-Log02Up
> x<-02Uptake[,2:6]
Test of model lm(Log02Up~TS+COD). Compare with row 7.
>anova(lm(Log02Up~TS+COD),lm(Log02Up~Bod+TKN+TS+TVS+COD))
 Res.Df RSS Df Sum of Sq F Pr(>F)
1 17 1.08502
2 14 0.96512 3 0.1199 0.5797 0.6379

The p-value from the F-test is 0.638, whereas the adjusted p-value is the maximum of the p-values for the models contained in {TS,COD}, namely 0.638 for {TS,COD}, 0.139 for {TS}, 0.129 for {COD} and 0.000 for the empty model {}, so the adjusted p-value is 0.638. So this model is not declared inadequate.

Model #16, {TKN, TVS}, is declared inadequate, but its adjusted p-value comes from model #5, {TVS}, because the largest p-value for a model contained in {TKN,TVS} is from model {TVS}.

> spjotvoll(x,y)

> ;	sb-	JOLVOII	(x,y)										
	р	Cp	Fp	pval	adjuste	ed.pval	inadequate	Bod	TKN	TS	TVS	COD	
1	1	55.463	11.893	0.000		0.000	TRUE	0	0	0	0	0	
2	2	6.297	2.074	0.139		0.139	FALSE	0	0	1	0	0	
3	2	6.576	2.144	0.129		0.129	FALSE	0	0	0	0	1	
4	2	13.505	3.876	0.025		0.025	TRUE	1	0	0	0	0	
5	2	20.331	5.583	0.007		0.007	TRUE	0	0	0	1	0	
6	2	56.861	14.715	0.000		0.000	TRUE	0	1	0	0	0	
7	3	1.739	0.580	0.638		0.638	FALSE	0	0	1	0	1	
8	3	5.274	1.758	0.201		0.201	FALSE	0	0	0	1	1	
9	3	6.872	2.291	0.123		0.129	FALSE	0	1	0	0	1	
10	3	6.885	2.295	0.122		0.139	FALSE	1	0	1	0	0	
11	3	7.165	2.388	0.113		0.139	FALSE	0	0	1	1	0	
12	3	7.336	2.445	0.107		0.139	FALSE	0	1	1	0	0	
13	3	7.705	2.568	0.096		0.129	FALSE	1	0	0	0	1	
14	3	9.097	3.032	0.065		0.065	FALSE	1	1	0	0	0	
15	3	11.331	3.777	0.036		0.036	TRUE	1	0	0	1	0	
16	3	21.369	7.123	0.004		0.007	TRUE	0	1	0	1	0	
17	4	2.319	0.160	0.854		0.854	FALSE	0	1	1	0	1	
18	4	3.424	0.712	0.508		0.638	FALSE	0	0	1	1	1	
19	4	3.439	0.720	0.504		0.638	FALSE	1	0	1	0	1	
20	4	5.665	1.833	0.196		0.201	FALSE	0	1	0	1	1	
21	4	6.253	2.126	0.156		0.156	FALSE	1	1	1	0	0	
22	4	6.515	2.258	0.141		0.141	FALSE	1	1	0	0	1	
23	4	7.152	2.576	0.112		0.201	FALSE	1	0	0	1	1	
24	4	8.155	3.077	0.078		0.139	FALSE	1	0	1	1	0	
25	4	8.165		0.078		0.139	FALSE	0	1	1	1	0	
26	4	8.681		0.065		0.065	FALSE	1	1	0	1	0	
27	5	4.001		0.972		0.972	FALSE	0	1	1	1	1	
28	5	4.319		0.581		0.854	FALSE	1	1	1	0	1	
29	5	5.068		0.319		0.638	FALSE	1	0	1	1	1	
30	5	6.776		0.118		0.201	FALSE	1	1	0	1	1	
31	5	7.697		0.075		0.156	FALSE	1	1	1	1	0	
32		6.000		1.000		1.000	FALSE	1	1	1	1	1	
	-						l testing;						
C	<u> </u>	 77	- /	10001	774				a				

Spjotvoll's method is a case of closted testing; see Marcus et al. (1976) Spjotvoll, E. (1977) Alternatives to plotting C_P in multiple regression. Biometrika 64, 1-8. Correction: page 241. Marcus R, Peritz E, Gabriel KR. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655-60.

Statistics 500 Bulk Pack - 100 -

ANOVA

Memory data. 36 kids randomized to form 3 groups of 12, which were given different treatments. The 'data' are columns 1 and 2, for group and 4=words. It is a "balanced design" because every group has the same sample size. The rest of memory consists of various ways of coding the 2 degrees of freedom between the three groups into two coded variables. The variables ten and five are "dummy variables" for two categories, leaving out the third category. The variables five_ten and nh_ten are used to produce effects that are deviations from a mean for all three groups. The best coding is nier and info which involve "orthogonal contrasts that you partition the sam of squares between groups into single degree of freedom parts that add back to the total.

> memory[1:3,]

> memory

	group	words	five_ten	nh_ten	ten	five	hier	info
1	Ten	50	-1	-1	1	0	0.5	1
2	Ten	49	-1	-1	1	0	0.5	1
3	Ten	44	-1	-1	1	0	0.5	1
4	Ten	31	-1	-1	1	0	0.5	1
5	Ten	47	-1	-1	1	0	0.5	1
6	Ten	38	-1	-1	1	0	0.5	1
7	Ten	38	-1	-1	1	0	0.5	1
8	Ten	48	-1	-1	1	0	0.5	1
9	Ten	45	-1	-1	1	0	0.5	1
10	Ten	48	-1	-1	1	0	0.5	1
11	Ten	35	-1	-1	1	0	0.5	1
12	Ten	33	-1	-1	1	0	0.5	1
13	Five	44	1	0	0	1	0.5	-1
14	Five	41	1	0	0	1	0.5	-1
15	Five	34	1	0	0	1	0.5	-1
16	Five	35	1	0	0	1	0.5	-1
17	Five	40	1	0	0	1	0.5	-1
18	Five	44	1	0	0	1	0.5	-1
19	Five	39	1	0	0	1	0.5	-1
20	Five	39	1	0	0	1	0.5	-1
21	Five	45	1	0	0	1	0.5	-1
22	Five	41	1	0	0	1	0.5	-1
23	Five	46	1	0	0	1	0.5	-1
24	Five	32	1	0	0	1	0.5	-1
25	NoHier	33	0	1	0	0	-1.0	0
26	NoHier	36	0	1	0	0	-1.0	0
27	NoHier	37	0	1	0	0	-1.0	0
28	NoHier	42	0	1	0	0	-1.0	0
29	NoHier	33	0	1	0	0	-1.0	0
30	NoHier	33	0	1	0	0	-1.0	0
31	NoHier	41	0	1	0	0	-1.0	0
32	NoHier	33	0	1	0	0	-1.0	0
33	NoHier	38	0	1	0	0	-1.0	0
34	NoHier	39	0	1	0	0	-1.0	0
35	NoHier	28	0	1	0	0	-1.0	0
36	NoHier	42	0	1	0	0	-1.0	0

ANOVA

> attach(memory)

```
The anova can be done as a linear model with a factor as the predictor.
> anova(lm(words~group))
Analysis of Variance Table
Response: words
           Df Sum Sq Mean Sq F value Pr(>F)
          2 215.06 107.53 3.7833 0.03317 *
group
Residuals 33 937.92
                      28.42
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Or you can use the acv command. You get the same answer.
> summary(aov(words~group))
             Df Sum Sq Mean Sq F value Pr(>F)
             2 215.06 107.53 3.7833 0.03317 *
group
             33 937.92
Residuals
                        28.42
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Multiple Comparisons using Tukey's Method

> TukeyHSD(aov(words~group))
Tukey multiple comparisons of means
95% family-wise confidence level
Fit: aov(formula = words ~ group)
\$group
diff lwr upr
NoHier-Five -3.750000 -9.0905714 1.590571
Ten-Five 2.166667 -3.1739047 7.507238
Ten-NoHier 5.916667 0.5760953 11.257238

These are simultaneous 95% confidence intervals for the difference in means between two groups. The promise is that all 3 confidence intervals will cover their population differences in 95% of experiments. This is a better promise than that each one, by itself, covers in 95% of uses, because then the first interval would have a 5% chance of error, and so would the second, and so would the third, and the chance of at least one error would be greater than 5%. If the interval includes zero, as the first two intervals do, then you can't declare the two groups significantly different. If the interval excludes zero, as the third interval does, you can declare the two groups significantly different.

Tukey, Bonferroni and Holm

```
> help(pairwise.t.test)
> help(p.adjust)
> TukeyHSD(aov(words~group))
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = words ~ group)
$group
                 diff
                             lwr
                                       upr
NoHier-Five -3.750000 -9.0905714 1.590571
Ten-Five
            2.166667 -3.1739047 7.507238
Ten-NoHier 5.916667 0.5760953 11.257238
> pairwise.t.test(words,group,p.adj = "none")
       Pairwise comparisons using t tests with pooled SD
data: words and group
      Five NoHier
NoHier 0.094 -
Ten
      0.327 0.010
P value adjustment method: none
> pairwise.t.test(words,group,p.adj = "bonf")
        Pairwise comparisons using t tests with pooled SD
data: words and group
      Five NoHier
NoHier 0.283 -
Ten
      0.980 0.031
P value adjustment method: bonferroni
> pairwise.t.test(words,group,p.adj = "holm")
       Pairwise comparisons using t tests with pooled SD
data: words and group
      Five NoHier
NoHier 0.189 -
Ten 0.327 0.031
Holm, S. (1979) A simple sequentially rejective multiple test
procedure. Scandinavian Journal of Statistics, 6, 65-70.
http://www.jstor.org/
Wright, S. P. (1992). Adjusted P-values for simultaneous
     inference. Biometrics, 48, 1005-1013. http://www.jstor.org/
```

Here are three different codings with the same Anova table. Notice that much is the same, but some things differ. >summary(lm(words~ten+five)) Call: lm(formula = words ~ ten + five) Residuals: 10 Median 30 Min Max -11.167 -3.479 0.875 4.771 7.833 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 36.250 1.539 23.554 <2e-16 *** ten 5.917 2.176 2.718 0.0104 * 0.0943 . five 3.750 2.176 1.723 Residual standard error: 5.331 on 33 degrees of freedom Multiple R-Squared: 0.1865, Adjusted R-squared: 0.1372 F-statistic: 3.783 on 2 and 33 DF, p-value: 0.03317 > summary(lm(words~five_ten+nh_ten)) Call: lm(formula = words ~ five_ten + nh_ten) Residuals: 10 Median Min 30 Max -11.167 -3.479 0.875 4.771 7.833 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 39.4722 0.8885 44.424 <2e-16 *** 0.5278 1.2566 0.420 five_ten 0.6772 1.2566 -2.564 0.0151 * nh_ten -3.2222 Residual standard error: 5.331 on 33 degrees of freedom Multiple R-Squared: 0.1865, Adjusted R-squared: 0.1372 F-statistic: 3.783 on 2 and 33 DF, p-value: 0.03317 > summary(lm(words~hier+info)) Call: lm(formula = words ~ hier + info) Residuals: Min 1Q Median 30 Max -11.167 -3.479 0.875 4.771 7.833 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 39.4722 0.8885 44.424 <2e-16 *** hier 3.2222 1.2566 2.564 0.0151 * info 1.0833 1.0882 0.996 0.3267 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 5.331 on 33 degrees of freedom Multiple R-Squared: 0.1865, Adjusted R-squared: 0.1372 F-statistic: 3.783 on 2 and 33 DF, p-value: 0.03317

ANOVA: Many Ways to Code the Same Anova

```
Contrasts in ANOVA:
                                Better Coding of Nominal Variables
The third coding is best, because the predictors (contrasts) are uncorrelated, so the sums of squares partition.
> cor(memory[,3:4])
          five_ten nh_ten
five_ten 1.0 0.5
                       1.0
                0.5
nh_ten
> cor(memory[,5:6])
       ten five
ten
      1.0 -0.5
five -0.5 1.0
> cor(memory[,7:8])
     hier info
hier
     1
               0
         0
               1
info
Notice that hier and info have zero correlation: they are orthogonal. Because of this, you can partition the two degrees of freedom
between groups into separate sums of squares.
> anova(lm(words~hier+info))
Analysis of Variance Table
           Df Sum Sq Mean Sq F value Pr(>F)
hier
           1 186.89 186.89 6.5756 0.01508 *
                        28.17 0.9910 0.32674
            1 28.17
info
Residuals 33 937.92
                         28.42
Reverse the order of info and hier, and you get the same answer.
> anova(lm(words~info+hier))
Analysis of Variance Table
           Df Sum Sq Mean Sq F value Pr(>F)
info
           1 28.17 28.17 0.9910 0.32674
hier
            1 186.89 186.89 6.5756 0.01508 *
Residuals 33 937.92 28.42
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
You can't do this with correlated predictors, because they overlap, and the order of the variables changes the sum of squares for the
variable, so one can't really say that what portion of the sum of squares belongs to the variable.
> anova(lm(words~ten+five))
Analysis of Variance Table
           Df Sum Sq Mean Sq F value Pr(>F)
             1 130.68 130.68 4.5979 0.03947 *
ten
            1 84.38 84.38 2.9687 0.09425 .
five
Residuals 33 937.92 28.42
> anova(lm(words~five+ten))
Analysis of Variance Table
           Df Sum Sq Mean Sq F value Pr(>F)
five
           1 5.01 5.01 0.1764 0.67720
            1 210.04 210.04 7.3902 0.01037 *
ten
Residuals 33 937.92 28.42
```

Coding the Contrasts in ANOVA in R

This is about shortcuts to get R to convert a nominal variable into several contrasts. There's no new statistics here; just R details.

The group variable, memory\$group, is a factor. > is.factor(memory\$group)

[1] TRUE

This factor has 3 levels. Notice that the levels are ordered and the order matters.

```
> levels(memory$group)
[1] "Five" "NoHier" "Ten"
```

> memory\$group

[1]	Ten	Ten	Ten	Ten	Ten	Ten	Ten	Ten	Ten
[10]	Ten	Ten	Ten	Five	Five	Five	Five	Five	Five
[19]	Five	Five	Five	Five	Five	Five	NoHier	NoHier	NoHier
[28]	NoHier	NoHier	NoHier	NoHier	NoHier	NoHier	NoHier	NoHier	NoHier
Level	Levels: Five NoHier Ten								

If you do nothing, R codes a factor in a linear model using 'dummy coding'.

> contrasts(memory\$group)

NoHier	Ten
0	0
1	0
0	1
	0

You can change the coding. Essentially, you can replace the little table above by whatever you want. We will build an new 3x2 table and redefine the contrasts to be this new table.

[1,] 0.5 -1 [2,] -1.0 0 [3,] 0.5 1

So cm is our new table, and we redefine the contrasts for memory\$group. > contrasts(memory\$group)<-cm

This replaces the 'dummy coding' by our new coding.

> contr	rasts(r	nemory\$gr	oup)
	hier2	info2	
Five	0.5	-1	
NoHier	-1.0	0	
Ten	0.5	1	

Coding the Contrasts in ANOVA, Continued

If you ask R to extend the contrasts into variables, it will do this with "model.matrix". Notice that this is the coding in the original data matrix, but R is happy to generate it for you using the contrasts you specified.

```
> m<-model.matrix(memory$words~memory$group)</pre>
```

> m

(Intercept) memory\$grouphier2 memory\$groupinfo2 1 1 0.5 1 2 1 0.5 1 3 1 0.5 1 4 1 0.5 1 5 1 0.5 1 6 1 0.5 1 7 1 0.5 1 8 1 0.5 1 9 1 0.5 1 10 1 0.5 1 11 1 0.5 1 12 1 0.5 -1 13 1 0.5 -1 14 1 0.5 -1 15 1 0.5 -1 16 1 0.5 -1 19 1 0.5 -1 22 1 0.5 -1 23 1 0.5 -1 24 1 0.5 -1 25 1 -1.0 0 26
11 0.5 121 0.5 131 0.5 141 0.5 151 0.5 161 0.5 171 0.5 181 0.5 191 0.5 1101 0.5 1111 0.5 1121 0.5 1131 0.5 -1141 0.5 -1151 0.5 -1161 0.5 -1171 0.5 -1181 0.5 -1201 0.5 -1211 0.5 -1231 0.5 -1241 0.5 -1251 -1.0 0 271 -1.0 0 281 -1.0 0 291 -1.0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
41 0.5 1 5 1 0.5 1 6 1 0.5 1 7 1 0.5 1 8 1 0.5 1 9 1 0.5 1 10 1 0.5 1 11 1 0.5 1 12 1 0.5 1 13 1 0.5 -1 14 1 0.5 -1 16 1 0.5 -1 17 1 0.5 -1 18 1 0.5 -1 20 1 0.5 -1 21 1 0.5 -1 23 1 0.5 -1 24 1 0.5 -1 25 1 -1.0 0 27 1 -1.0 0 28 1 -1.0 0 29 1 -1.0 0
41 0.5 1 5 1 0.5 1 6 1 0.5 1 7 1 0.5 1 8 1 0.5 1 9 1 0.5 1 10 1 0.5 1 11 1 0.5 1 12 1 0.5 1 13 1 0.5 -1 14 1 0.5 -1 16 1 0.5 -1 17 1 0.5 -1 18 1 0.5 -1 20 1 0.5 -1 21 1 0.5 -1 23 1 0.5 -1 24 1 0.5 -1 25 1 -1.0 0 27 1 -1.0 0 28 1 -1.0 0 29 1 -1.0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
61 0.5 1 7 1 0.5 1 8 1 0.5 1 9 1 0.5 1 10 1 0.5 1 11 1 0.5 1 12 1 0.5 -1 13 1 0.5 -1 14 1 0.5 -1 16 1 0.5 -1 17 1 0.5 -1 18 1 0.5 -1 20 1 0.5 -1 21 1 0.5 -1 23 1 0.5 -1 24 1 0.5 -1 25 1 -1.0 0 27 1 -1.0 0 28 1 -1.0 0 29 1 -1.0 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
261-1.00271-1.00281-1.00291-1.00
271-1.00281-1.00291-1.00
28 1 -1.0 0 29 1 -1.0 0
28 1 -1.0 0 29 1 -1.0 0
29 1 -1.0 0
30 1 -1.0 0
31 1 -1.0 0
33 1 -1.0 0
34 1 -1.0 0
35 1 -1.0 0
36 1 -1.0 0
36 1 -1.0 0
<pre>> hcontrast<-m[,2]</pre>
<pre>> hcontrast<-m[,2] > icontrast<-m[,3]</pre>
<pre>> hcontrast<-m[,2]</pre>
 hcontrast<-m[,2] icontrast<-m[,3] We now do the anova with single degree of freedom contrasts.
 hcontrast<-m[,2] icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. anova(lm(memory\$words~hcontrast+icontrast))
<pre>> hcontrast<-m[,2] > icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. > anova(lm(memory\$words~hcontrast+icontrast)) Analysis of Variance Table</pre>
 hcontrast<-m[,2] icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. anova(lm(memory\$words~hcontrast+icontrast))
<pre>> hcontrast<-m[,2] > icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. > anova(lm(memory\$words~hcontrast+icontrast)) Analysis of Variance Table</pre>
<pre>> hcontrast<-m[,2] > icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. > anova(lm(memory\$words~hcontrast+icontrast)) Analysis of Variance Table</pre>
<pre>> hcontrast<-m[,2] > icontrast<-m[,3] We now do the anova with single degree of freedom contrasts. > anova(lm(memory\$words~hcontrast+icontrast)) Analysis of Variance Table</pre>

ANOVA DECOMPOSITION

> mod<-aov(words~group,projections=T)</pre>

> mod\$projections

> modppiojeccions						
	(Intercept)	group	Residuals			
1	39.47222	2.6944444	7.833333e+00			
2	39.47222	2.6944444	6.833333e+00			
3	39.47222	2.6944444	1.833333e+00			
4	39.47222	2.6944444	-1.116667e+01			
5	39.47222	2.6944444	4.833333e+00			
6	39.47222	2.6944444	-4.166667e+00			
7	39.47222	2.6944444	-4.166667e+00			
8	39.47222	2.6944444	5.833333e+00			
9	39.47222	2.6944444	2.833333e+00			
10	39.47222	2.6944444	5.833333e+00			
11	39.47222	2.6944444	-7.166667e+00			
12	39.47222	2.6944444	-9.166667e+00			
13	39.47222	0.5277778	4.000000e+00			
14	39.47222	0.5277778	1.000000e+00			
15	39.47222	0.5277778	-6.000000e+00			
16	39.47222	0.5277778	-5.000000e+00			
17	39.47222	0.5277778	-9.503032e-16			
18	39.47222	0.5277778	4.000000e+00			
19	39.47222	0.5277778	-1.000000e+00			
20	39.47222	0.5277778	-1.000000e+00			
20	39.47222	0.5277778	5.000000e+00			
22	39.47222	0.5277778	1.000000e+00			
23	39.47222	0.5277778	6.000000e+00			
23 24	39.47222	0.5277778	-8.000000e+00			
24 25	39.47222					
		-3.2222222	-3.250000e+00			
26	39.47222	-3.2222222	-2.50000e-01			
27	39.47222	-3.2222222	7.500000e-01			
28	39.47222	-3.2222222	5.750000e+00			
29	39.47222	-3.2222222	-3.250000e+00			
30	39.47222	-3.2222222	-3.250000e+00			
31	39.47222	-3.2222222	4.750000e+00			
32	39.47222	-3.2222222	-3.250000e+00			
33	39.47222	-3.2222222	1.750000e+00			
34	39.47222	-3.2222222	2.750000e+00			
35	39.47222	-3.2222222	-8.250000e+00			
36	39.47222	-3.2222222	5.750000e+00			
	cr(,"df")					
(Ir	ntercept)	group	Residuals			
	1	2	33			

Orthogonal and Non-orthogonal Predictors > attach(memory) > summary(aov(words~group)) Df Sum Sq Mean Sq F value Pr(>F) 2 215.06 107.53 3.7833 0.03317 * group 33 937.92 28.42 Residuals ten and five are not orthogonal predictors - so there is not a unique sum of squares for each > anova(lm(words~ten+five)) Analysis of Variance Table Response: words Df Sum Sq Mean Sq F value Pr(>F) 1 130.68 130.68 4.5979 0.03947 * ten 1 84.38 84.38 2.9687 0.09425 . five Residuals 33 937.92 28.42 > anova(lm(words~five+ten)) Analysis of Variance Table Response: words Df Sum Sq Mean Sq F value Pr(>F) five 5.01 5.01 0.1764 0.67720 1 1 210.04 210.04 7.3902 0.01037 * ten 28.42 Residuals 33 937.92 her and info are orthogonal predictors - so there is a unique sum of squares for each > anova(lm(words~hier+info)) Analysis of Variance Table Response: words Df Sum Sq Mean Sq F value Pr(>F) 1 186.89 186.89 6.5756 0.01508 * hier info 1 28.17 28.17 0.9910 0.32674 Residuals 33 937.92 28.42 > anova(lm(words~info+hier)) Analysis of Variance Table Response: words Df Sum Sq Mean Sq F value Pr(>F) 28.17 28.17 0.9910 0.32674 info 1 1 186.89 186.89 6.5756 0.01508 * hier Residuals 33 937.92 28.42

Simulating in R

Ten observations from the standard Normal distribution :

> rnorm(10) [1] 0.8542301 -1.3331572 1.4522862 0.8980641 0.1456334 [6] 0.4926661 -0.4366962 0.6204263 -0.1582319 -0.6444449

Fixed integer sequences

> 1:2
[1] 1 2
> 1:5
[1] 1 2 3 4 5
> 0:1

[1] 0 1

20 coin flips

```
> sample(0:1,20,r=T)
[1] 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0 1 0 1 1 1
```

10 random numbers from 1 to 5

```
> sample(1:5,10,r=T)
[1] 5 2 3 5 2 2 1 1 3 2
```

More information:

help(sample)
help(rnorm)

STATISTICS 500 FALL 2006 PROBLEM 1 DATA PAGE 1 Due in class Thusday 26 Oct 2006

This is an exam. Do not discuss it with anyone.

The data concern Y=sr=aggregate personal savings in 50 countries over ten years, as predicted by four predictors, the percentages of young and old people, per-capita disposable income, and the growth rate in per-capita disposable income. (A related paper, which you need not consult, is Modigliani (1988), The role of intergenerational transfers and life cycle saving in the accumulation of wealth, *Journal of Economic Perspectives*, 2, 15-40.)

In R, type:

> data(LifeCycleSavings)

and the data should enter your workspace as an object. In R, I would type:

> attach(LifeCycleSavings)

> nation<-rownames(LifeCycleSavings)</pre>

so the variable "nation" would have the country names. The data are also available in JMP, Excel and text file formats publicly at <u>http://stat.wharton.upenn.edu/statweb/course/Fall2006/stat500/</u> or for Wharton accounts at the course download at: <u>http://www-stat.wharton.upenn.edu/</u>

First 2 of 50 lines of data:

Country	sr	pop15	pop75	dpi	ddpi	
Australia	11.43	29.35	2.87	2329.68	2.87	
Austria	12.07	23.32	4.41	1507.99	3.93	
LifeCycleSa	vings		pac	kage:dataset	S	R Documentation
Intercountr	y Life	-Cycle	Saving	gs Data		
Description	: Data	on the	e savi	ngs ratio 19	60-1970.	
Usage: Lif	eCycle	Saving	5			
Format: A	data f	rame w	ith 50	observation	s on 5 var.	iables.
[,1]	sr	nume	eric a	aggregate pe	rsonal sav	rings
				% of populat		
				% of populat		
				real per-cap		able income
	ddpi	nume	eric	% growth rat	e of dpi	
Details:		_	_			
		-				reloped by Franco
-			-			nal saving divided
	-			-		ta disposable
				hic variable		apita disposable
					-	entage of the
						eraged over the
			-			_
decade 1960-1970 to remove the business cycle or other short-term fluctuations.						
Source:	acions	•				
	na. Ar	nie (19	977) II	noublished P	S Thesis	Massachusetts
Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.						
			01	and Welsch.	R. E. (198	0) _Regression
Diagno						

STATISTICS 500 FALL 2006 PROBLEM 1 DATA PAGE 2 Due in class Thusday 26 Oct 2006 This is an exam. Do not discuss it with anyone.

The following models are mentioned on the answer page. Please note that different Greek letters are used so that different things have different symbols – there is no special meaning to θ or β -- they are just names. Notice carefully that the subscripts go from 0 to k in a model with k variables, but which variable is variable #1 changes from model to model.

Model 1: sr = $\theta_0 + \theta_1 \operatorname{pop} 75 + \eta \operatorname{with} \eta \sim_{\operatorname{iid}} N(0, \omega^2)$

Model 2: sr = $\beta_0 + \beta_1 \text{ pop15} + \beta_2 \text{ pop75} + \beta_3 \text{ dpi} + \beta_4 \text{ ddpi} + \varepsilon \text{ with } \varepsilon \sim_{\text{iid}} N(0, \sigma^2)$

--This problem set is an exam. Do not discuss it with anyone. If you discuss it with anyone, you have cheated on an exam.

--Write your name and id# on BOTH sides of the answer page.

--Write answers in the spaces provided. Brief answers suffice. Do not attach additional pages. Do not turn in computer output. Turn in only the answer page.

--If a question asks you to circle an answer, then circle an answer. If you circle the correct answer you are correct. If you circle the incorrect answer you are incorrect. If you cross out an answer, no matter which answer you cross out, you are incorrect.

--If a question has several parts, answer every part. It is common to lose points by not answering part of a question.

Name: Last, First:	Name: Last, First: ID#:						
Statistics 500 Fall 2006 Problem 1 Answer Page 1							
This is an exam. Do not discuss it with anyone.							
1. Plot the data in various ways and an	swer th	e follo			ONE		
Question			t	IRCLE	ONE		
Which country has the highest savings (sr)?	rate	US	Japan	Chile	Bolivia	Libya	
Which country has the highest income (dpi)?		US	Japan	Chile	Bolivia	Libya	
In which country is income rising at the fastest rate (ddpi)?	e	US	Japan	Chile	Bolivia	Libya	
In these data, if a country has more than 40% of its population under 15 years of then it has less than 3% of its population over 75 years old.	ld,		TF	RUE F	ALSE		
2. Assume model #1 (on the data pag	ge) is tr	ue, and	d fit mod	lel #1 , ar	nd use it to	o answer	
the following questions. Notice that θ_1	is the c	coeffici	ent of po	p75 in n	nodel #1.		
Question							
Test the hypothesis that $H_0: \theta_1=0$ in model #1. What is the name of the test? What is the numerical value of the test statistic? What is the two- sided P-value ? Is is the null hypothesis plausible (Circle One)?		erical va	: alue: AUSIBL			SIBI F	
	11015	1 121	TCOIDE) I I LI IC	SIDLL	
What is the numerical value of the least squares estimate of θ_1 in model #1 and what is its estimated standard	Estim	ate of (Ð₁:				
error?	Estim	ated sta	andard er	ror of θ_1	:		
The fitted savings rates under model			CIR	CLE ON	IE		
#1 are about 1% higher in a country with about 1% more people over 75 years of age. (Here "about" means "round to the nearest whole percent, so that 87.26% is about 87%.)			TRUE	F	ALSE		
Given the 95% confidence interval for θ_1 in model #1.	[,		_]	
What is the estimate of ω (not ω^2 !), the standard deviation of the η 's?	Nume	erical es	stimate o	f ω:			

Name: Last, First:			ID #:				
Statistics 500 Fall 2006 P							
This is an exam. Do not discuss it with anyone.							
3. Assume that model #	2 is true, a	nd use its	fit t	o answer the	e following que	estions.	
In model #2, the coefficient	ient of pop	75 is β_2 .					
What is the least squares	s estimate	of β_2 in	Es	timate of β	2:		
model #2? What is the ty	wo-sided F	-value		-			
for testing H ₀ : $\beta_2=0$ in m	nodel #2?		P-	value:			
Test the hypothesis H ₀ :		$=\beta_4=0$					
in model #2. What is th			Na	me of test:			
What is the value of the	test statisti	ic?					
What is the P-value? Is	H ₀ plausib	ole?	Te	st statistic:			
CIRCLE ONE	-						
			P-	value:			
			H	is PLAUS	SIBLE NOT	PLAUSIBLE	
Do a Normal plot of the	residuals.	Do the			CIRCLE ONE		
Shapiro-Wilk test applie				CLEAR E	EVIDENCE	OTHER	
Is there clear evidence t							
are not Normal? What i	s the P-va l	lue from	P-value:				
the Shapiro-Wilk test?							
Plot the residuals from n		-			CIRCLE ONE	E	
the predicted values. Is							
indicating a nonlinear re			C	LEAR BEN	ND NO C	LEAR BEND	
Which country has the la	0						
residual? What is the nu			Country: Value:				
this residual, including i	-				CIRCLE ONE	3	
country save more or les	s than the	model			<u></u>		
predicted?	<u> </u>				ORE LI		
4. In model #2, test H ₀ :							
in a model that includes							
			e		U	Mean Square	
	names the	11 0		Squares	freedom		
Full model includes	pop15	pop75					
which variables?							
	dpi	ddpi					
Reduced model	pop15	pop75					
includes which vars?	1 •	11.					
** **	dpi	ddpi					
Which variables add to	pop15	pop75					
the reduced model to	1.	11 .					
give the full model	dpi	ddpi	-				
Residual		XXXXXX					
	XXXXX	XXXXXX					

F-value: _____ H_0 : $\beta_1 = \beta_2 = 0$ is PLAUSIBLE NOT PLAUSIBLE

Statistics 500 Fall 2006 Problem 1 Answer Page 1 This is an exam. Do not discuss it with anyone.

Owertian	
1. Plot the data in various ways and use the d	lata to answer the following questions.

Question	CIRCLE ONE			
Question				
Which country has the highest savings (sr)?	rate US Japan Chile Bolivia Libya			
Which country has the highest income (dpi)?	US Japan Chile Bolivia Libya			
In which country is income rising at the fastest rate (ddpi)?	e US Japan Chile Bolivia Libya			
In these data, if a country has more than 40% of its population under 15 years of then it has less than 3% of its population over 75 years old.	ld, (TRUE) FALSE			
2. Assume model #1 (on the data pag	ge) is true, and fit model #1, and use it to answer			
	is the coefficient of pop75 in model #1.			
Ouestion				
Test the hypothesis that $H_0: \theta_1=0$ in model #1. What is the name of the test? What is the numerical value of the test statistic? What is the two- sided P-value ? Is is the null hypothesis plausible (Circle One)?	Name of test: t -test Numerical value: $t = 2.31$ P-value: 0.025			
	H ₀ is PLAUSIBLE (NOT PLAUSIBLE)			
What is the numerical value of the least squares estimate of θ_1 in model	Estimate of θ_1 : <i>1,099</i>			
#1 and what is its estimated standard error?	Estimated standard error of θ_1 : 0,475			
The fitted savings rates under model #1 are about 1% higher in a country with about 1% more people over 75 years of age. (Here "about" means "round to the nearest whole percent, so that 87.26% is about 87%.)	CIRCLE ONE TRUE FALSE Bit of a surprise - you'd think people over 75 would be spending from their savings.			
Given the 95% confidence interval for θ_1 in model #1.	[0,14 , 2,05]			
What is the estimate of ω (not ω^2 !), the standard deviation of the η 's?	Numerical estimate of ω : 4.3 (that is 4.3%)			

3. Assume that model #2 is true, and use it	s fit to answer the following questions.
In model #2, the coefficient of pop75 is	÷ .
β_2 . What is the least squares estimate of	Estimate of β_2 : -1.69
β_2 in model #2? What is the two-sided P-	
value for testing H_0 : $\beta_2=0$ in model #2?	P-value: 0.13
Test the hypothesis H ₀ : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$	Name of test: <i>F-test</i>
in model #2. What is the name of the	
test? What is the value of the test	Test statistic: 5.76 on 4 and 45 degrees of freedom
statistic? What is the P-value? Is H_0	
plausible? CIRCLE ONE	P-value: 0,0008
	H ₀ is PLAUSIBLE NOT PLAUSIBLE
Do a Normal plot of the residuals. Do	CIRCLE ONE
the Shapiro-Wilk test applied to the	
residuals. Is there clear evidence that the	CLEAR EVIDENCE (OTHER)
residuals are not Normal? What is the P -	
value from the Shapiro-Wilk test?	P-value: 0.85
Plot the residuals from model #2 against	CIRCLE ONE
the predicted values. Is there a clear bend	
indicating a nonlinear relationship?	CLEAR BEND NO CLEAR BEND
Which country has the largest absolute	
residual? What is the numerical value of	Country: Zambia Value: 9,75%
this residual, including its sign? Did this	CIRCLE ONE
country save more or less than the model	
predicted?	(MORE) LESS

Statistics 500 Fall 2006 Problem 1 Answer Page 2

4. In model #2, test H₀: $\beta_1 = \beta_2 = 0$ which asserts that neither pop15 nor pop75 are needed in a model that includes dpi and ddpi. Fill in table, F & P-value, CIRCLE ONE.

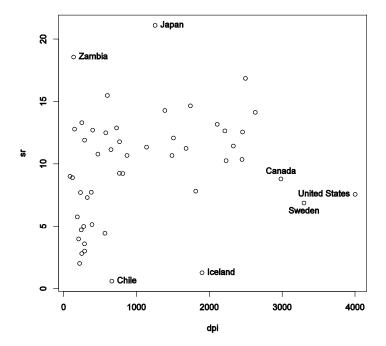
	LIST all v names that		Sum of Squares	Degrees of freedom	Mean Square
Full model includes which variables?	pop15 dpi	pop75 ddpi	332,92	4	83,2
Reduced model includes which vars?	dpi	ddpi	158.91	2	79.5
Which variables add to the reduced model to give the full model	рор15	pop75	174.01	2	87.0
Residual	XXXXXXX XXXXXXX		650,71	45	14.5

F-value: 6.02 **P-value**: 0.005 H₀: $\beta_1 = \beta_2 = 0$ is PLAUSIBLE (NOT PLAUSIBLE)

Doing the Problem Set in R

(Fall 2006, Problem Set 1)

This data set happens to be in R, so get it by typing: > data(LifeCycleSavings)

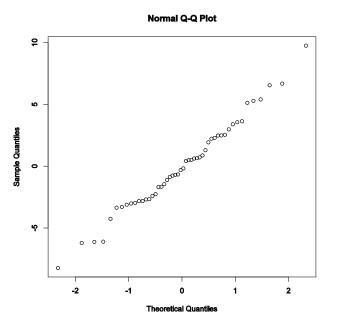

Look at the first two rows:

If you attach the data set, the variable LifeCycleSavingsSsr can be called sr. > attach(LifeCycleSavings)

In this data set, the country names are the row names. You can make them into a variable: > nations<-rownames(LifeCycleSavings)

Plot the data. Identify the points.

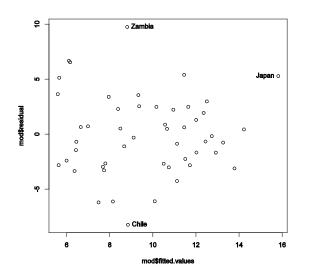
- > plot(dpi,sr)
- > identify(dpi,sr,label=nations)


Doing the Problem Set in R, continued

(Fall 2006, Problem Set 1)

> summary(lm(sr~pop75)) Call: $lm(formula = sr \sim pop75)$ Residuals: Median Min 1Q 30 Max -9.26566 -3.22947 0.05428 2.33359 11.84979 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.1517 1.2475 5.733 6.4e-07 *** pop75 1.0987 0.4753 2.312 0.0251 * ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.294 on 48 degrees of freedom Multiple R-Squared: 0.1002, Adjusted R-squared: 0.08144 F-statistic: 5.344 on 1 and 48 DF, p-value: 0.02513 > mod<-lm(sr~pop15+pop75+dpi+ddpi)</pre> > summary(mod) Call: lm(formula = sr ~ pop15 + pop75 + dpi + ddpi) Residuals: 1Q Median Min 30 Max -8.2422 -2.6857 -0.2488 2.4280 9.7509 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 28.5660865 7.3545161 3.884 0.000334 *** -0.4611931 0.1446422 -3.189 0.002603 ** pop15 pop75 -1.6914977 1.0835989 -1.561 0.125530 -0.0003369 0.0009311 -0.362 0.719173 dpi 0.4096949 0.1961971 2.088 0.042471 * ddpi ___ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.803 on 45 degrees of freedom Multiple R-Squared: 0.3385, Adjusted R-squared: 0.2797 F-statistic: 5.756 on 4 and 45 DF, p-value: 0.0007904 **Doing the Problem Set in R, continued** (Fall 2006, Problem Set 1)


Normal quantile plot of residuals: Is it (more or less) a straight line? > qqnorm(mod\$residual)

Shapiro-Wilk test of Normal distribution applied to residuals:

Plot residuals against predicted (or fitted) values:

- > plot(mod\$fitted.values,mod\$residual)
- > identify(mod\$fitted.values,mod\$residual,label=nations)

Doing the Problem Set in R, continued (Fall 2006, Problem Set 1)

```
General linear hypothesis: You've already fit the fall model, called mod. Now fit the reduced model, called modReduce. > modReduce<-lm(sr~dpi+ddpi)
```

```
Compare the two models:

> anova(modReduce,mod)

Analysis of Variance Table

Model 1: sr ~ dpi + ddpi

Model 2: sr ~ pop15 + pop75 + dpi + ddpi

Res.Df RSS Df Sum of Sq F Pr(>F)

1 47 824.72

2 45 650.71 2 174.01 6.0167 0.004835 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
```

STATISTICS 500 FALL 2006 PROBLEM 2 DATA PAGE 1 Due in class Tuesday 28 November 2006 This is an exam. Do not discuss it with anyone.

The data set is the same as for the first problem set, although different issues will be examined.

In R, type:

```
> data(LifeCycleSavings)
```

and the data should enter your workspace as an object. In R, I would type:

> attach(LifeCycleSavings)

> nation<-rownames(LifeCycleSavings)</pre>

so the variable "nation" would have the country names. The data are also available in JMP, Excel and text file formats publicly at <u>http://stat.wharton.upenn.edu/statweb/course/Fall2006/stat500/</u> or for Wharton accounts at the course download at: <u>http://www-stat.wharton.upenn.edu/</u>

First 2 of 50 lines of data:

First 2 01 30 f		Jala.					
Country	sr	pop15	pop75	dpi	ddpi		
Australia	11.43	29.35	2.87	2329.68	2.87		
Austria	12.07	23.32	4.41	1507.99	3.93		
LifeCycleSa	vings		pacł	age:dataset	S	R Documentation	
Intercountr	y Life	-Cycle	Saving	gs Data			
Description	: Data	on the	e savir	ngs ratio 19	60-1970.		
Usage: Lif							
Format: A	data f	rame w:	ith 50	observation	s on 5 var	iables.	
[,1]	sr	nume	eric a	aggregate pe	rsonal sav	ings	
				s of populat			
				s of populat			
				real per-cap		able income	
	ddpi	nume	eric a	growth rat	e of dpi		
Details:		с ·					
		-				eloped by Franco	
-			-			nal saving divided ta disposable	
						apita disposable	
				nic variable			
					-	entage of the	
					-	raged over the	
			-			-	
decade 1960-1970 to remove the business cycle or other short-term fluctuations.							
Source:							
Sterli	ng, Ar	nie (19	977) Ur	published B	S Thesis.	Massachusetts	
		Techno					
Belsle	у, D	A., Kul	1. E. a	and Welsch, 1	R. E. (198	0) _Regression	
		Di	agnost	ics New Yo	ork: Wiley		

STATISTICS 500 FALL 2006 PROBLEM 2 DATA PAGE 2 This is an exam. Do not discuss it with anyone.

The G7 or Group of 7 countries were Canada, France, Germany, Italy, Japan, the United Kingdom and the United States. **Construct a variable**, G7, which is 1 for the G7 countries and is zero for other countries.

The following models are mentioned on the answer page. Please note that different Greek letters are used so that different things have different symbols – there is no special meaning to θ or β -- they are just names. Notice carefully that the subscripts go from 0 to k in a model with k variables, but which variable is variable #1 changes from model to model.

Model 1:	dpi = $\theta_0 + \theta_1 \text{ pop}15 + \theta_2 \text{ pop}75 + \eta \text{ with } \eta \sim_{iid} N(0,\omega^2)$
Model 2:	$\log_2(dpi) = \beta_0 + \beta_1 \text{ pop}15 + \beta_2 \text{ pop}75 + \epsilon \text{ with } \epsilon \sim_{iid} N(0, \sigma^2)$
Model 3:	$log_2(dpi) = \gamma_0 + \gamma_1 \text{ pop}15 + \gamma_2 \text{ pop}75 + \gamma_3 \text{ G7} + \upsilon \text{ with } \upsilon \sim_{iid} N(0, \phi^2)$
Model 4:	sr = $\lambda_0 + \lambda_1 \text{ pop}15 + \lambda_2 \text{ pop}75 + \lambda_3 \text{ dpi} + \lambda_4 \text{ ddpi} + \iota \text{ with } \iota \sim_{iid} N(0, \tau^2)$

--This problem set is an exam. Do not discuss it with anyone. If you discuss it with anyone, you have cheated on an exam.

--Write your name and id# on BOTH sides of the answer page.

--Write answers in the spaces provided. Brief answers suffice. Do not attach additional pages. Do not turn in computer output. Turn in only the answer page.

--If a question asks you to circle an answer, then circle an answer. If you circle the correct answer you are correct. If you circle the incorrect answer you are incorrect. If you cross out an answer, no matter which answer you cross out, you are incorrect.

--If a question has several parts, answer every part. It is common to lose points by not answering part of a question.

Name: Last, First:	ID #:							
Statistics 500 Fall 2006 F	Statistics 500 Fall 2006 Problem 2 Answer Page 1							
This is an exam. Do not	t discuss it with anyor	ne.						
1. Fit model #1 on the data page, and calculate	te its residuals and pre	edicted values.						
Question	CIRCLE ONE or	FILL IN ANSWER						
The Normal quantile plot of	TRUE	FALSE						
residuals suggests the residuals								
look Normal.								
Apply the Shapiro Wilk test is to the								
residuals. What is the p-value?	P-value =							
The boxplot of residuals shows that the								
model fits well because the mean residual	TRUE	FALSE						
is close to zero.								
The plot of residuals vs predicted values								
has no fan shape suggesting the η in Model	TRUE	FALSE						
#1 have constant variance ω^2 .								
Give the correlation between predicted								
values the absolute values of the residuals.	Correlation =							

2. Fit model #2 on the data page, and calculate its residuals and predicted values.

Question	CIRCLE ONE or	FILL IN ANSWER
The Normal quantile plot of residuals suggests the residuals look Normal.	TRUE	FALSE
Apply the Shapiro Wilk test is to the residuals. What is the p-value?	P-value =	
The boxplot of residuals shows that the model fits well because the mean residual is close to zero.	TRUE	FALSE
The plot of residuals vs predicted values has a fan shape suggesting the ε in Model #2 do not have constant variance σ^2 .	TRUE	FALSE
Give the correlation between predicted values the absolute values of the residuals.	Correlation =	
Compare $\log_2(dpi) = 7.97$ for Tunisia with $\log_2(dpi) = 11.97$ for the United States, a difference. If the difference on the \log_2	dpiUS = 4 dpiT	dpiUS = exp(4dpiT)
scale were exactly 4, then the two dpi's, say dpiT and dpiUS, are related by which	$dpiUS = e^4 dpiT$	$dpiUS = 10^4 dpiT$
formula.	$dpiUS = 2^4 dpiT$	$dpiUS = dpiT^4$

Name: 1	Last,	First:
---------	-------	--------

ID#:

Statistics 500 Fall 2006 Problem 2 Answer Page 2 This is an exam. Do not discuss it with anyone.

3. Construct the variable G7, as described on the data page, and fit **Model #3**. This model assumes parallel planes, in the sense that the same slope is fitted for pop15 and pop75 in the G7 countries and in the remaining 43 countries. Test the null hypothesis of parallel regression planes against the alternative hypothesis that the slopes are different in G7 and other countries. Give the **name** of the test statistic, the **numerical value** of the test statistic, the **degrees of freedom** and the **p-value**.

test statistic, the degrees of heedolin and the	p and the		
Name of test:	Numerical value:		
Degrees of freedom:	p-value:		
4. Fit Model #4. The remaining questions re			
4a. In Model #4, which nation has the	Nation:	Value:	
largest leverage or hat h_i ? What is the			
numerical value of h_i for this nation?			
4b. The nation you identified in 4a had a	CIRCLE	EONE	
large value of h_i because its savings ratio sr			
is below the median but its ddpi is quite	TRUE	FALSE	
high – an unusual combination!			
4c. In Model #4, our rule of thumb is to	Numerical value:		
compare the leverage h_i to what numerical			
value to decide whether it is large?			
4d. In model #4, which nation has the	Nation:	Value:	
largest absolute deleted or jackknife			
residual? What is the numerical value of			
this deleted residual including it sign (+-)?			
4e. Test at the 0.05 level that the nation			
identified in 4d is an outlier. What is the	Numerical value:		
numerical value of the test statistic? What			
is the p-value that would have been	'Would have been' p-value		
appropriate if you were not testing for	CIRCLE	EONE	
outliers but knew in advance which nation			
to test? Given that you didn't know in	Outlier N	Not an Outlier	
advance which nation to test, is this nation			
an outlier at the 0.05 level?			
4f. Which nation has the largest positive	Positive	Negative	
DFFITS? Which nation has the most	Nation:	Nation:	
negative DFFITS? What are the numerial			
values?	Value:	Value:	
4g. If the United States were added to	CIRCLE	EONE	
Model #4 (49 states vs 50 states) the			
predicted value for the United States would	TRUE	FALSE	
go up by $\frac{1}{4}$ of its standard error in the 50			
state fit.			

Statistics 500 Fall 2006 Problem 2 Answer Page 1 **This is an exam. Do not discuss it with anyone. 1** Fit model #1 on the data page; calculate residuals and predicted values. **5 points each**

Question	CIRCLE ONE or FILL IN ANSWER		
The Normal quantile plot of			
residuals suggests the residuals	TRUE FALSE		
look Normal.			
Apply the Shapiro Wilk test is to the			
residuals. What is the p-value?	P-value = 0,002. Doesn't look Normal!		
The boxplot of residuals shows that the	TRUE		
model fits well because the mean residual	The mean residual is always zero - that tells you nothing about		
is close to zero.	whether the model fits.		
The plot of residuals vs predicted values			
has no fan shape suggesting the η in Model	TRUE (FALSE)		
#1 have constant variance ω^2 .	Fan shape, suggesting variance is not constant.		
Give the correlation between predicted			
values the absolute values of the residuals.	Correlation = 0.466, suggesting variance is not constant,		
2. Fit model #2, and calculate its residuals an	d predicted values. 5 points each		
Question	CIRCLE ONE or FILL IN ANSWER		
The Normal quantile plot of			
residuals suggests the residuals	(TRUE) FALSE		
look Normal.			
Apply the Shapiro Wilk test is to the	P-value =0,755, Could be Normal,		
residuals. What is the p-value?			
The boxplot of residuals shows that the	TRUE (FALSE)		
model fits well because the mean residual	The mean residual is always zero – that tells you not hing about		
is close to zero.	whether the model fits.		
The plot of residuals vs predicted values			
has a fan shape suggesting the ε in Model	TRUE (FALSE)		
#2 do not have constant variance σ^2 .	Not a fan skape.		
Give the correlation between predicted			
values the absolute values of the residuals.	Correlation = -0.098, so variance looks fairly constant.		
Compare $log_2(dpi) = 7.97$ for Tunisia with			
$log_2(dpi) = 11.97$ for the United States, a	dpiUS = 4 dpiT $dpiUS = exp(4dpiT)$		
difference. If the difference on the \log_2			
scale were exactly 4, then the two dpi's,	$dpiUS = e^4 dpiT$ $dpiUS = 10^4 dpiT$		
say dpiT and dpiUS, are related by which			
formula.	$dpiUS = 2^4 dpiT$) $dpiUS = dpiT^4$		

Statistics 500 Fall 2006 Problem 2 Answer Page 2

3. Construct the variable G7, as described on the data page, and fit Model #3. This model assumes parallel planes, in the sense that the same slope is fitted for pop15 and pop75 in the G7 countries and in the remaining 43 countries. Test the null hypothesis of parallel regression planes against the alternative hypothesis that the slopes are different in G7 and other countries. Give the **name** of the test statistic, the **numerical value** of the test statistic, the **degrees of freedom** and the **p-value**. **10 points total**

test statistic, the degrees of freedom and the	p-value. To points total
Name of test: F-test. Add two interaction terms	Numerical value: $F = 2,97$
to model, G7xPop15, G7xPop75. Are they needed?	
Degrees of freedom: 2 and 44	p-value: 0,061
4. Fit Model #4. The remaining questions re	efer to Model #4 5 points each
4a. In Model #4, which nation has the	Nation: Value:
largest leverage or hat h_i ? What is the	Libya 0,531
numerical value of h_i for this nation?	
4b. The nation you identified in 4a had a	
large value of h_i because its savings ratio sr	TRUE (FALSE)
is below the median but its ddpi is quite	Leverage depends on X's, not on 4, but 4=sr!
high – an unusual combination!	
4c. In Model #4, our rule of thumb is to	Numerical value:
compare the leverage h_i to what numerical	0.2 = 2mean(h) = 2*5/50
value to decide whether it is large?	,
4d. In model #4, which nation has the	Nation: Value:
largest absolute deleted or jackknife	Zambia 2,854
residual? What is the numerical value of	
this deleted residual including it sign (+-)?	
4e. Test at the 0.05 level that the nation	Numerical value: $t = 2,854$
identified in 4d is an outlier. What is the	
numerical value of the test statistic? What	'Would have been' p-value: 0.00657
is the p-value that would have been	CIRCLE ONE
appropriate if you were not testing for	
outliers but knew in advance which nation	Outlier (Not an Outlier)
to test? Given that you didn't know in	To be an outlier, the P-value had to be less than
advance which nation to test, is this nation	0.05/50 = 0.001, and its not.
an outlier at the 0.05 level?	
4f. Which nation has the largest positive	Positive Negative
DFFITS? Which nation has the most	Nation: Japan Nation: Libya
negative DFFITS? What are the numerial values?	
	Value: 0,86 Value: -1,16
4g. If the United States were added to	CIRCLE ONE
Model #4 (49 states vs 50 states) the	TRUE (FALSE)
predicted value for the United States would	Would go down, not up, by ¼ standard error. The sign
go up by $\frac{1}{4}$ of its standard error in the 50	of DFFITS talks about the impact of adding an
state fit.	observation to a regression which does not have it.
	-

Doing the Problem Set in R

(Fall 2006, Problem Set 2)

```
This data set happens to be in R, so get it by typing: > data(LifeCycleSavings)
```

Look at the first two rows:

```
If you attach the data set, the variable LifeCycleSavings$sr can be called sr.
> attach(LifeCycleSavings)
```

In this data set, the country names are the row names. You can make them into a variable: > nations<-rownames(LifeCycleSavings)

Fit model #1.
> mod<-lm(dpi~pop15+pop75)</pre>

```
Normal quantile plot of residuals. Does not look like a line, so the residuals do not look Normal. > qqnorm(mod$residual)
```

Shapiro Wilk test of the null hypothesis that the residuals are Normal. The p-value is 0.002, so there is strong evidence the residuals are not Normal. (Strictly speaking, the Shapiro Wilk test is an informal guide, not a formal test, when applied to residuals.)

```
> shapiro.test(mod$residual)
```

Shapiro-Wilk normality test

data: mod\$residual
W = 0.9183, p-value = 0.002056

```
Plot residuals us predicted. There is a fan shape, maybe also a bend.
> plot(mod$fitted.values,mod$residuals)
```

```
Model #2 using base 2 logs.
> modl<-lm(log2(dpi)~pop15+pop75)</pre>
Fan shape is gone.
> plot(modl$fitted.values,modl$residuals)
> cor.test(abs(modl$residuals),modl$fitted.values)
        Pearson's product-moment correlation
       cor
-0.0981661
Residuals now look plausibly Normal.
> qqnorm(modl$residual)
> shapiro.test(modl$residual)
        Shapiro-Wilk normality test
data: modl$residual
W = 0.9846, p-value = 0.755
Create the dummy variable G7.
> G7 < -rep(0, 50)
> G7[c(6,14,15,22,23,43,44)]<-1</pre>
> G7
 [26] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
> nations[G7==1]
[1] "Canada"
                "France"
                                  "Germany"
                                                    "Italy"
[5] "Japan"
                "United Kingdom" "United States"
Add the new variable to the data set, making it the last column.
> LifeCycleSavings<-cbind(LifeCycleSavings,G7)</pre>
> LifeCycleSavings[1:3,]
              sr pop15 pop75 dpi ddpi G7
Australia 11.43 29.35 2.87 2329.68 2.87
                                             0
```

Austria 12.07 23.32 4.41 1507.99 3.93 0 Belgium 13.17 23.80 4.43 2108.47 3.82 0

Question 3: Testing whether the planes are parallel. Fit reduced and full model; compare by anova. > mod<-lm(log2(dpi)~pop15+pop75+G7)

```
> mod2<-lm(log2(dpi)~pop15+pop75+G7+pop15*G7+pop75*G7)
> anova(mod,mod2)
```

Analysis of Variance Table

```
Model 1: log2(dpi) ~ pop15 + pop75 + G7
Model 2: log2(dpi) ~ pop15 + pop75 + G7 + pop15 * G7 +
pop75 * G7
Res.Df RSS Df Sum of Sq F Pr(>F)
1 46 29.4713
2 44 25.9624 2 3.5089 2.9734 0.06149
```

pop75

28.5660865 -0.4611931 -1.6914977 -0.0003369 0.4096949

dpi

ddpi

```
Fit and save Model #4.
```

```
> mod<-lm(sr~pop15+pop75+dpi+ddpi)
> mod
```

Call:

lm(formula = sr ~ pop15 + pop75 + dpi + ddpi)

pop15

Coefficients: (Intercept)

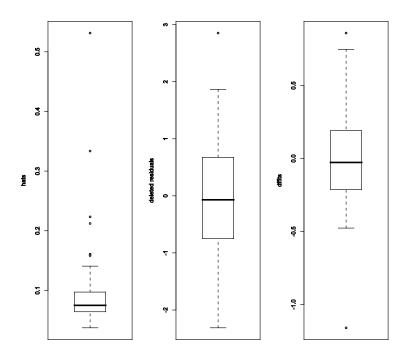
```
Key Step: Compute diagnostics for Model #4.
```

```
> h<-hatvalues(mod)
> deleted<-rstudent(mod)
> dft<-dffits(mod)</pre>
```

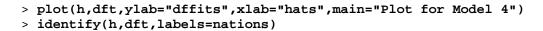
> summary(h)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03730 0.06427 0.07502 0.10000 0.09702 0.53150

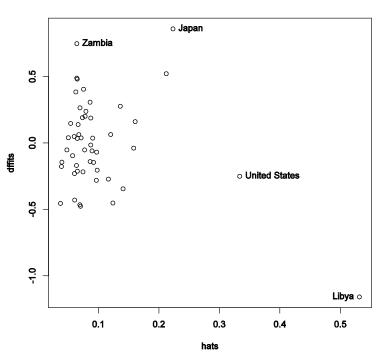
```
> summary(deleted)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.313e+00 -7.400e-01 -6.951e-02 -4.207e-05 6.599e-01 2.854e+00
```

```
> summary(dft)
```


```
Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.160000 -0.210800 -0.027100 -0.005891 0.189700 0.859700
```

```
> par(mfrow=c(1,3))
```


```
> boxplot(h,ylab="hats")
```


```
> boxplot(deleted,ylab="deleted residuals")
```

```
> boxplot(dft,ylab="dffits")
```


Boxplots of Diagnostics for Model #4

Plot for Model 4

ddpi

Who has the highest leverage? > nations[h==max(h)] [1] "Libya" > max(h)[1] 0.5314568 How is Libya different in terms of X's? > LifeCycleSavings[nations=="Libya",] sr pop15 pop75 dpi ddpi G7 Libya 8.89 43.69 2.07 123.58 16.71 0 > summary(LifeCycleSavings[,2:5]) pop15 pop75 dpi Min. :21.44 Min. :0.560 Min. : 88.94 Min. : 0.220 1st Qu.:26.22 1st Qu.:1.125 1st Qu.: 288.21 1st Qu.: 2.002 Median : 32.58 Median : 2.175 Median : 695.66 Median : 3.000

```
Look at Libya's ddpi - 16.71 !
```

```
Deleted residuals and outlier tests. Use Bonferroni Inequality: 50 tests, split 0.05 into 50 parts
> max(deleted)
[1] 2.853558
```

Mean :35.09 Mean :2.293 Mean :1106.76 Mean : 3.758 3rd Qu.:44.06 3rd Qu.:3.325 3rd Qu.:1795.62 3rd Qu.: 4.478 Max. :47.64 Max. :4.700 Max. :4001.89 Max. :16.710

```
> min(deleted)
[1] -2.313429
```

```
> nations[deleted==max(deleted)]
[1] "Zambia"
```

```
So Zambia is the candidate for being an outlier. There are 44 degrees of freedom, 50 observations, less 5
parameters in the model (constant and four variables) less 1 for Zambia which was deleted. Use t-distribution with
44 degrees of freedom. Want Prob(t>=2.853558) = 1-Prob(t\leq=2.853558) as the 1-sided p-value,
> 1-pt(2.853558,44)
[1] 0.003283335
but must double that to get the 2-sided p-value
> 2*(1-pt(2.853558,44))
[1] 0.006566669
Use Bonferroni Inequality: 50 tests, split 0.05 into 50 parts .
> 0.05/50
[1] 0.001
P-value is small, but not small enough – needed to be less than 0.05/50 = 0.001.
```

```
An equivalent way to test whether Zambia is an outlier is to add a dummy variable to the regression.
> nations[46]
[1] "Zambia"
> zambia<-rep(0,50)</pre>
> zambia[46]<-1</pre>
> summary(lm(sr~pop15+pop75+dpi+ddpi+zambia))
Call:
lm(formula = sr ~ pop15 + pop75 + dpi + ddpi + zambia)
Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
(Intercept) 27.4482536 6.8434624 4.011 0.000231 ***
             -0.4505547 0.1344223 -3.352 0.001658 **
pop15
            -1.3502562 1.0137262 -1.332 0.189728
pop75
             -0.0004183 0.0008655 -0.483 0.631289
dpi
              0.3680963 0.1828464 2.013 0.050242
ddpi
zambia 10.4213353 3.6520491 2.854 0.006567 **
____
Residual standard error: 3.533 on 44 degrees of freedom
Multiple R-Squared: 0.4418, Adjusted R-squared: 0.3783
F-statistic: 6.964 on 5 and 44 DF, p-value: 7.227e-05
Same p-value as before, 0.006567. Use Bonferroni Inequality: 50 tests, split 0.05 into 50 parts.
> 0.05/50
[1] 0.001
> 0.006567<=(0.05/50)
[1] FALSE
P-value is small, but not small enough – needed to be less than 0.05/50 = 0.001.
The p-values you get from most regression programs are 2-sided, so you compare them to 0.05/50. When you use
the t-distribution directly, you need to be careful to do a 2 sided test!
```

```
DFFITS
```

STATISTICS 500 FALL 2006 PROBLEM 3 DATA PAGE 1 Due Friday 15 December 2006 at 11:00 AM This is an exam. Do not discuss it with anyone.

The data are adapted for this exam from Schoket, et al. (1991) ³²P-Postlabelling detection of aromatic DNA adducts in peripheral blood lymphocytes from aluminum production plant workers. *Mutation Research*, **260**, 89-98. You can obtain a copy from the library web page if you'd like, but that is not needed to do the problem set. There are four groups of 7 people. Half or 14 people worked in one of two aluminum production plants (A), which the other half were controls (C) without exposure to the production of aluminum. Half were nonsmokers (NS) and half reported smoking 20 cigarettes a day. (The original data contain many other people as well – I have selected 28 people to give a simple design.) For instance, NS_C refers to a nonsmoking control. The outcome is "Adducts." A blood sample was obtained from each person, and the DNA in lymphocytes was examined. An adduct is a molecule attached to your DNA, in this case, a polycyclic aromatic hydrocarbon (PAH), to which aluminum production workers are exposed. There are also PAHs in cigarette smoke. The unit is the number of adducts per 10⁸ DNA nucleotides.

> ALdata

	grp	Adducts	Smoking	Aluminum
1	NS_C	1.32	0	0
2	NS_C	1.26	0	0
3	NS_C	1.39	0	0
4	NS_C	1.38	0	0
5	NS_C	0.40	0	0
6	NS_C	1.24	0	0
7	NS_C	0.65	0	0
8	NS_A	1.15	0	1
9	NS_A	0.36	0	1
10	NS_A	0.31	0	1
11	NS_A	1.83	0	1
12	NS_A	1.34	0	1
13	NS_A	1.05	0	1
14	NS_A	1.05	0	1
15	S_C	1.20	20	0
16	S_C	0.62	20	0
17	S_C	1.30	20	0
18	S_C	1.30	20	0
19	S_C	0.79	20	0
20	S_C	2.42	20	0
21	S_C	2.03	20	0
22	S_A	2.95	20	1
23	S_A	4.66	20	1
24	S_A	2.18	20	1
25	S_A	2.32	20	1
26	S_A	0.96	20	1
27	S_A	0.81	20	1
28	S_A	2.90	20	1

Data are in the Rdata file, in a JMP-IN file called ALdata.jmp, and in a text file, ALdata.txt at <u>http://stat.wharton.upenn.edu/statweb/course/Fall2006/stat500/</u>

Tukey's method of multiple comparisons is sometimes called TukeyHSD or Tukey's honestly significant difference test, and it is one of several procedures using the studentized range. STATISTICS 500 FALL 2006 PROBLEM 3 DATA PAGE 2

j=1 for NS_C, j=2 for NS_A, j=3 for S_C, j=4 for S_A.

Model 1: Adducts = $\zeta + \theta_i + \eta$ with $\eta \sim_{iid} N(0,\omega^2)$ with $0 = \theta_1 + \theta_2 + \theta_3 + \theta_4$

Model 2: $\log_2(\text{Adducts}) = \mu + \alpha_j + \varepsilon \text{ with } \varepsilon \sim_{\text{iid}} N(0, \sigma^2) \text{ with } 0 = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$

Suggestion: Both JMP and R have features that help with setting up the analysis needed for question #6. These features allow groups to be coded into variables without entering numbers for each person. These features would be very helpful if there were thousands of observations and dozens of groups, but there are only 28 observations and four groups. If you find those features helpful, then use them. If you find them unhelpful, then don't use them. There are only four groups, only four means, and only 28 observations. You should not go a long distance to take a short-cut.

Turning in the exam: The registrar sets final exam dates, and even for take-homes, faculty cannot alter the exam date. For a T/Th noon class, the final exam is due Friday 15 Dec 06, 11:00am <u>http://www.upenn.edu/registrar/pdf_main/06C_Exam_Schedule.pdf</u> **Please make and keep a photocopy of your answer page.** You may turn in the exam early if you wish. Place your exam in a sealed envelop addressed to me, and either: (i) hand it to me in my office 473 Huntsman on the due date, or (ii) place it in my mailbox in Statistics, 4th floor of Huntsman, or (iii) leave it with the receptionist in Statistics. If you would like to receive your graded exam and an answer key by mail, please include a regular stamped, self-addressed envelop with your exam.

--This problem set is an exam. Do not discuss it with anyone. If you discuss it with anyone, you have cheated on an exam.

--Write your name and id# on BOTH sides of the answer page.

--Write answers in the spaces provided. Brief answers suffice. Do not attach additional pages. Do not turn in computer output. Turn in only the answer page.

--If a question asks you to circle an answer, then circle an answer. If you circle the correct answer you are correct. If you circle the incorrect answer you are incorrect. If you cross out an answer, no matter which answer you cross out, you are incorrect.

ID#:

Name: Last, First:	

Statistics 500 Fall 2006 Problem 3 Answer Page 1 (See also the Data Page)

This is an exam. Do not discuss it with anyone.

1. Do 4 parallel boxplots of Adducts for the 4 groups. Do 4 parallel boxplots of $log_2(Adducts)$ for the four groups. Use these plots to answer the following questions.

Question	CIRCL	LE ONE
Model #2 is more appropriate for these data		
than model #1 because of near collinearity	TRUE	FALSE
for model #1.		
Model #2 is more appropriate for these data		
than model #1 because the dispersion of	TRUE	FALSE
Adducts does not look constant over groups.		
Model #2 is more appropriate for these data		
than model #1 because of nested factors in	TRUE	FALSE
model #1.		
	11.1 .1 . TT	0

2. Use model #**2** on the data page to test the null hypothesis H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$.

Question	CIRCLE ON	CIRCLE ONE or FILL IN ANSWER			
Name of test statistic is:	Numerical value	e of test statistic is:			
p-value is:	H ₀ is: (CIRCLE	E ONE)			
	Plausible	Not Plausible			

3. Suppose you were to compare each pair of two of the four group means in a two-sided 0.05 level test using the ordinary t-test under model #2. That is, you will test the null hypothesis, H₀: $\alpha_i = \alpha_j$, for each i<j. **How many different tests** would you be doing? If it were true that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, then what would be the **chance of a p-value less than or equal to 0.05 on each one single test** taken one at a time? If it were true that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, then what is the **expected number of p-values** less than or equal to 0.05 in all the t-tests you are doing?

Question	Fill in a Number
How many different tests would you be	
doing?	
What is the chance of a p-value <= 0.05 on	
one single test? (Give a probability)	
What is the expected number of p-values	
<=0.05 in all the t-tests you would be doing?	
(enter an expected number)	

4. Use Tukey's method of multiple comparisons with experimentwise error rate of 0.05.

Under model #2, by Tukey's method:	CIRCI	LE ONE
H ₀ : $\alpha_{S_C} = \alpha_{NS_C}$ is rejected	TRUE	FALSE
H ₀ : $\alpha_{S_A} = \alpha_{NS_A}$ is rejected	TRUE	FALSE
H ₀ : $\alpha_{S_A} = \alpha_{S_C}$ is rejected	TRUE	FALSE

 Name: Last, First:
 ID#:

 Statistics 500 Fall 2006 Problem 3 Answer Page 2
 (See also the Data Page)

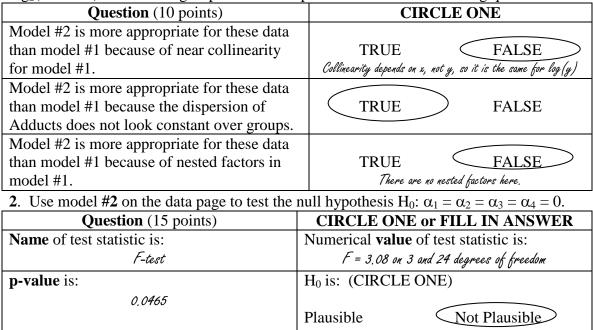
 This is an exam. Do not discuss it with anyone.

5. Propose three **orthogonal** contrasts with the stated interpretations. Using integer weights. In other words, in each of $12 = 3 \times 4$ cells, place a positive or negative integer.

Group	NS_C	NS_A	S_C ,	S_A
Interpretation				
a. Smoking versus nonsmoking				
b. Aluminum plant worker vs control				
c. Difference between aluminum plant				
workers and controls is different for smokers				
and for nonsmokers				

Show that contrasts **b.** and **c.** in your table are orthogonal:

6. Use your contrasts in question 5 to fill in the following ANOVA table for Model #2.					
Source of variation	Sum of	Degrees of	Mean	F-statistic	
	squares	Freedom	Square		
Between Groups					
a. Smoking vs					
Nonsmoking					
b. Aluminum worker					
vs control					
c. Interaction					
Within Groups				XXXXXX	
				XXXXXX	


7. In model #2, test the null hypothesis: $H_0: 0 = (\alpha_{S_A} + \alpha_{S_C}) - (\alpha_{NS_A} + \alpha_{NS_C})$ against a two-sided alternative. What is the name of the test? What is the numerical value of the test statistic? What is the p-value? Is the null hypothesis plausible?

Name of test:	Value of test statistic	•
P-value:	CIRCLE ONE	
	Plausible	Not Plausible
Smokers tend to have more adducts than		
nonsmokers.	TRUE	FALSE

Statistics 500 Bulk Pack - 136 -

Statistics 500 Fall 2006 Problem 3 Answer Page 1 **This is an exam. Do not discuss it with anyone.**

1. Do 4 parallel boxplots of Adducts for the 4 groups. Do 4 parallel boxplots of $log_2(Adducts)$ for the four groups. Use these plots to answer the following questions.

3. Suppose you were to compare each pair of two of the four group means in a two-sided 0.05 level test using the ordinary t-test under model #2. That is, you will test the null hypothesis, H₀: $\alpha_i = \alpha_j$, for each i<j. **How many different tests** would you be doing? If it were true that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, then what would be the **chance of a p-value less than or equal to 0.05 on each one single test** taken one at a time? If it were true that $\alpha_1 = \alpha_2 = \alpha_3 = \alpha_4 = 0$, then what is the **expected number of p-values** less than or equal to 0.05 in all the t-tests you are doing?

Question (15 points)	Fill in a Number
How many different tests would you be doing?	6 tests
What is the chance of a p-value <= 0.05 on one single test? (Give a probability)	On one test, 0.05
What is the expected number of p-values <=0.05 in all the t-tests you would be doing? (enter an expected number)	With 6 tests, 0.05 x 6 = 0.30 which is much more than 0.05

4. Use Tukey's method of multiple comparisons with experimentwise error rate of 0.05.

Under model #2, by Tukey's method:	CIRCLE ONE (15 points)		
H ₀ : $\alpha_{S_C} = \alpha_{NS_C}$ is rejected	TRUE FALSE		
$H_0: \alpha_{S_A} = \alpha_{NS_A}$ is rejected	TRUE FALSE		
H ₀ : $\alpha_{S_A} = \alpha_{S_C}$ is rejected	TRUE FALSE		

Statistics 500 Fall 2006 Problem 3 Answer Page 2 (See also the Data Page) This is an exam. Do not discuss it with anyone.

5. Propose three orthogonal contrasts with the stated interpretations. Using integer weights. In other words, in each of $12 = 3 \times 4$ cells, place a positive or negative integer.

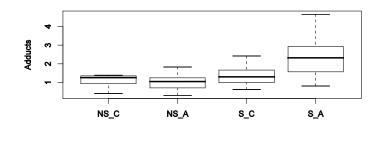
(15 points) Grou	p NS_C	NS_A	S_C,	S_A
Interpretation				
a. Smoking versus nonsmoking	-1	-1	1	1
b. Aluminum plant worker vs control	-1	1	-1	1
c. Difference between aluminum plant workers and controls is different for smoker and for nonsmokers	s 1	-1	-1	1

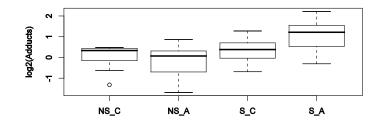
Show that contrasts b. and c. in your table are orthogonal:

$$(-1x1) + (1x-1) + (-1x-1) + (1x1) = -1 + -1 + 1 + 1 = 0$$

6. Use your contrasts in question 5 to fill in the following ANOVA table for Model #2.

Source of variation	Sum of	Degrees of	Mean	F-statistic
(15 points)	squares	Freedom	Square	
Between Groups	6,3388	3	2,1129	3.08
a. Smoking vs	4,3734	1	4,3734	6,38
Nonsmoking				
b. Aluminum worker	0,4222	1	0,4222	0,62
vs control				
c. Interaction	1,5433	1	1,5433	2,25
Within Groups	16,4570	24	0,6857	XXXXXX
				XXXXXX


7. In model #2, test the null hypothesis: $H_0: 0 = (\alpha_{S_A} + \alpha_{S_C}) - (\alpha_{NS_A} + \alpha_{NS_C})$ against a two-sided alternative. What is the name of the test? What is the numerical value of the test statistic? What is the p-value? Is the null hypothesis plausible? (15 points)


Name of test: <i>F</i> -test or t-test $(F=t^2)$ with 1 df	Value of test statistic: $F = 6.38$ from above	
P-value:	CIRCLE ONE	
0.0186	Plausible Not Plausible	
Smokers tend to have more adducts than nonsmokers.	TRUE FALSE	

Analysis Done in R

```
Question 1:
```

- > attach(ALdata)
- > par(mfrow=c(2,1))
- > boxplot(Adducts~grp,ylab="Adducts")
- > boxplot(log2(Adducts)~grp,ylab="log2(Adducts)")

For adducts, the S_A boxplot is much more dispersed than the others. For log₂(Adducts), there is not a very definite pattern.

```
Question 2:
> summary(aov(log2(Adducts)~grp))
                Sum Sq Mean Sq F value Pr(>F)
            Df
             3
                 6.3388
                         2.1129
                                 3.0814 0.04652 *
qrp
            24 16.4570
Residuals
                         0.6857
___
Question 4:
> TukeyHSD(aov(log2(Adducts)~grp))
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = log2(Adducts) ~ grp)
$grp
                 diff
                              lwr
                                         upr
NS A-NS C -0.2239629 -1.44499131 0.9970655
S_C-NS_C
           0.3208815 -0.90014688 1.5419099
S A-NS C
           1.0360018 -0.18502663 2.2570302
           0.5448444 -0.67618398 1.7658728
S C-NS A
           1.2599647
                       0.03893628 2.4809931
S A-NS A
S_A-S_C
           0.7151203 -0.50590815 1.9361487
```

You can code up the contrast variables in any of several ways. With a small problem, like this one, you could enter the numbers by hand. Or you could create the contrast variables yourself. Here, I show you the "standard way" in R, which is to give the factor "grp" a set of contrasts, then have R create the contrast matrix. It is heavy handed for such a tiny problem, but in large problems, it is convenient.

A factor, here "grp", starts with dummy coding of categories. Here it codes the four groups in three variables, leaving out the first group. The remainder of this page just redefines contrasts(grp) to be the contrasts we want.

Here are my three contrasts, which I defined as in smoke <- c(-1,-1,1,1), etc.

> smoke
[1] -1 -1 1 1
> alum
[1] -1 1 -1 1
> inter
[1] 1 -1 -1 1

Make them into a matrix or table by binding them as columns.

> m<-cbind(smoke,alum,inter)</pre> > m smoke alum inter [1,]-1 -1 1 [2,]1 -1 -1 [3,] -1 1 -1 [4,] 1 1 1

Now the magic step: set the contrasts for "grp" equal to the matrix you just made.

> contrasts(grp)<-m</pre>

What this does is associate those contrasts with this factor forever, or until you specify different contrasts. It is a bit heavy handed for our small, one-time analysis. We now look at the contrasts.

> contrasts(grp) smoke alum inter -1 1 NS C -1 NS_A -1 1 -1 S_C 1 -1 -1 S_A 1 1 1

So all that has happened on this page is contrasts (grp) has be redefined to be our contrasts, not the dummy coded contrasts.

The model matrix command extends the contrasts we just defined into variables for our 28 people. Again, in our small problem, you have to wonder whether this "short cut" was the long way around. In bigger problems, with mare groups, people and variables, the short cut is helpful. If you had built this matrix "by hand", the analysis would be the same. Dr you could use the formulas in the book applied to the four group means.

v<-model.matrix(log2(Adducts)~grp)						
> v						
(Int	ercept)	grpsmoke	grpalum	grpinter		
1	1	-1	-1	1		
2	1	-1	-1	1		
3	1	-1	-1	1		
4	1	-1	-1	1		
5	1	-1	-1	1		
6	1	-1	-1	1		
7	1	-1	-1	1		
8	1	-1	1	-1		
9	1	-1	1	-1		
10	1	-1	1	-1		
11	1	-1	1	-1		
12	1	-1	1	-1		
13	1	-1	1	-1		
14	1	-1	1	-1		
15	1	1	-1	-1		
16	1	1	-1	-1		
17	1	1	-1	-1		
18	1	1	-1	-1		
19	1	1	-1	-1		
20	1	1	-1	-1		
21	1	1	-1	-1		
22	1	1	1	1		
23 24	1	1 1	1 1	1 1		
24 25	1	1	1	1		
26	1	1	1	1		
20	1	1	1	1		
28	1	1	1	1		
20	-	-	-	±		
<pre>> smk<-v[,2] > al<-v[,3] > int<-v[,4]</pre>						
At long last, question 6 and 7: > anova(lm(log2(Adducts)~smk+al+int)) Analysis of Variance Table						
smk	Df 1	4.3734	9 Mean 1 4.37	Sq F value 34 6.3779	0.01857	*
al	1	0.4222	2 0.42	22 0.6157	0.44034	
int				33 2.2506		
		16.4570				

PROBLEM SET #1 STATISTICS 500 FALL 2007: DATA PAGE 1 Due in class Thusday 25 Oct 2007

```
This is an exam. Do not discuss it with anyone.
```

```
To learn about the dataset, type:
> help(BostonHousing2,package=mlbench)
BostonHousing
                         package:mlbench
                                                    R Documentation
    Housing data for 506 census tracts of Boston from the 1970 census.
     The dataframe 'BostonHousing' contains the original data by
    Harrison and Rubinfeld (1979), the dataframe 'BostonHousing2' the
    corrected version with additional spatial information (see
    references below).
Usage:
    data(BostonHousing)
     data(BostonHousing2)
Format:
     The original data are 506 observations on 14 variables, 'medv'
    being the target variable:
               per capita crime rate by town
       crim
               proportion of residential land zoned for lots over
       zn
                 25,000 sq.ft
       indus
                proportion of non-retail business acres per town
               Charles River dummy variable (= 1 if tract bounds
       chas
                river; 0 otherwise)
      nox
               nitric oxides concentration (parts per 10 million)
               average number of rooms per dwelling
      rm
               proportion of owner-occupied units built prior to 1940
      age
               weighted distances to five Boston employment centres
      dis
      rad
               index of accessibility to radial highways
       tax
               full-value property-tax rate per USD 10,000
      ptratio pupil-teacher ratio by town
      b
               1000(B - 0.63)^2 where B is the proportion of blacks by
                town
               percentage of lower status of the population
       lstat
       medv
               median value of owner-occupied homes in USD 1000's
     The corrected data set has the following additional columns:
       cmedv corrected median value of owner-occupied homes in USD
             1000's
       town name of town
       tract census tract
       lon
              longitude of census tract
       lat
              latitude of census tract
References:
    Harrison, D. and Rubinfeld, D.L. (1978). Hedonic prices and the
    demand for clean air. Journal of Environmental Economics and
    Management, 5, 81-102.
```

```
PROBLEM SET #1 STATISTICS 500 FALL 2007: DATA PAGE 2
To obtain the data, you can do one of several things:
```

Get it directly:

```
Go to the "packages" menu in R, click "load package" and click "mlbench" and type:
```

- > library(mlbench)
- > data(BostonHousing2)

Notice that you want BostonHousing2, NOT BostonHousing. You may wish to attach the data: > attach(BostonHousing2)

The data are also in the latest version of Rst500. RData and in an Excel file Bostonhousing2.xls at:: http://stat.wharton.upenn.edu/statweb/course/Fall-2007/STAT-500/ or http://download.wharton.upenn.edu/download/pub/stat/Fall-2007/ and Rst500. RData is also on my web page: http://www-stat.wharton.upenn.edu/~rosenbap/index.html To obtain a Wharton username or password for course use, apply at: http://apps.wharton.upenn.edu/accounts/class/ Use cmedv, not medv; here, cmedv contains the corrected values. Model #1

cmedv = $\beta_0 + \beta_1 \operatorname{nox} + \varepsilon$ with ε iid N(0, σ^2)

Model #2

cmedv = $\gamma_0 + \gamma_1 \operatorname{nox} + \gamma_2 \operatorname{crim} + \gamma_3 \operatorname{rm} + \zeta$ with ζ iid N(0, ω^2)

Follow instructions. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Name:	ID#
-------	-----

PROBLEM SET #1 STATISTICS 500 FALL 2007: ANSWER PAGE 1

This is an exam. Do not discuss it with anyone.

1. Fit model #1 on the data page, and use the fit to answer the following questions.

Questions refer to Model #1	Answer	
1.1 What is the name of the town containing	Name of town:	
the Census tract with the highest level of nox?		
the census tract with the highest level of hox?		
1.2 What is the full name of the town	Name of town:	
containing the Census tract with the lowest		
cmedy?		
1.3 What is the least squares estimate of β_1 ?		
(Give the numerical value.)	Estimate:	
1.4 If you were to use model #1 to predict	Point estimate of difference in \$. (Be	
cmedv, and you were to compare predictions	careful with the sign and the units.)	
for two tracts, one with $nox = .5$ and the other	caleful with the sign and the units.)	
with nox = .7, how much higher would the predicted value (in dollars) he for nox = 52		
predicted value (in dollars) be for nox = $.5?$	95% Interval:	
1.5 Give the 95% confidence interval for β_1		
assuming model 1 is true. (Give two numbers,	[,]	
low endpoint, high endpoint.)		
1.6 Test the null hypothesis, H_0 : $\beta_1=0$. What	No	
is the name of the test statistic? What is the	Name: Value:	
value of the test statistic? What is the two-		
sided p-value ? Is H_0 : $\beta_1=0$ plausible ?	p-value: CIRCLE ONE	
	H is Dlausible Not Dlausible	
1.7 What is the unbiased estimate of σ^2 under	H ₀ is Plausible Not Plausible Estimate of:	
	Estimate of:	
model #1? What is the corresponding estimate	2	
of σ ? What are the units (feet, pounds,	σ ² σ	
whatever) for the estimate of σ ?	TT •.	
	Units:	
2. Calculate the residuals and fitted values from		
Plot residuals vs fitted, Normal plot, boxplot, Sh		
2.1 The 16 residuals for the highest pollution, nox==.8710,		
are all positive residuals.	TRUE FALSE	
2.2 The residuals appear to be skewed to the right		
	TRUE FALSE	
2.3 The Shapiro-Wilk test suggests the residuals are not		
Normal	TRUE FALSE	
2.4 The Normal quantile plot suggests the residuals are not		
Normal	TRUE FALSE	

Name:	ID#_
-------	------

PROBLEM SET #1 STATISTICS 500 FALL 2007: ANSWER PAGE 2

This is an exam. Do not discuss it with anyone.

3. Fit model #2 on the data page and use it to answer the following questions.

Question	Answer		
3.1 What is the least squares point estimate	Estimate of:		
of the coefficient of nox, γ_1 , in model #2?			
What is the least squares point estimate of	γ1β1		
the coefficient of nox, β_1 , in model #1?			
3.2 Test the null hypothesis, $H_0:\gamma_1=\gamma_2=\gamma_3=0$			
under model #2. What is the name of the	Name: Value:		
test statistic? What is the value of the test			
statistic? What is the p-value ? Is H_0	p-value: CIRCLE ONE		
plausible?			
	H ₀ is Plausible Not Plausible		
3.3 What is the square of the correlation			
between observed and fitted cmedv in model	In model #2:		
#2? What is the square of the correlation			
between observed and fitted cmedv in model	In model #1:		
#1?			
3.4 What is the (ordinary Pearson)			
correlation between nox and crim? Does this	Correlation: CIRCLE ONE		
correlation provide an adequate basis to			
assert that: (i) pollution causes crime or (ii)	(i) Adequate basis Other		
crime causes pollution?			
	(ii) Adequate basis Other		
3.5 For Model 2, the plot of residuals against	CIRCLE ONE		
fitted values exhibits a pattern suggesting			
that a linear model is not an adequate fit.	TRUE FALSE		
3.6 The residuals do not look Normal.	CIRCLE ONE		
	TRUE FALSE		

4. In Model #2, test $H_0:\gamma_2=\gamma_3=0$. Which **variables** are in the full model? What is its **residual sum of squares** (RSS)? Which **variables** are in the reduced model? What is its **residual sum of squares** (RSS)? Give the numerical values of the **mean squares** in the numerator and denominator of the F ratio for testing H_0 . What is the numerical value of **F**? What is the **p-value**? Is the null hypothesis **plausible**?

Full Model	Variables:	RSS:		
Reduced Model	Variables:	RSS:		
Numerator and denominator of F	Numerator=	Denominator:=		
F=	p-value=	CIRCLE ONE:		
		Plausible Not Plausible		

PROBLEM SET #1 STATISTICS 500 FALL 2007: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. 1. Fit model #1 on the data page, and use the fit to answer the following questions.

Overtigen refer to Model #1			
Questions refer to Model #1	Answer (5 points per part)		
1.1 What is the name of the town containing	Name of town:		
the Census tract with the highest level of nox?	Cambridge		
1.2 What is the full name of the town	Name of town:		
containing the Census tract with the lowest	Boston South Boston		
cmedv?			
1.3 What is the least squares estimate of β_1 ?			
(Give the numerical value.)	Estimate: -34.02		
1.4 If you were to use model #1 to predict	Point estimate of difference in \$. (Be		
cmedy, and you were to compare predictions	careful with the sign and the units.)		
for two tracts, one with $nox = .5$ and the other			
with $nox = .7$, how much higher would the	-34.02 x (.57) x \$1000 = \$6,804		
predicted value (in dollars) be for $nox = .5$?			
1.5 Give the 95% confidence interval for β_1	95% Interval:		
assuming model 1 is true. (Give two numbers,	[-40.3 , -27.8]		
low endpoint, high endpoint.)			
1.6 Test the null hypothesis, H_0 : $\beta_1=0$. What			
is the name of the test statistic? What is the	Name: <i>t-test</i> Value: <i>t</i> = -10.67		
value of the test statistic? What is the two-			
sided p-value? Is H_0 : $\beta_1=0$ plausible?	p-value: 2 x 10 ⁻⁷⁶ CIRCLE ONE		
	H ₀ is Plausible Not Plausible		
1.7 What is the unbiased estimate of σ^2 under	Estimate of:		
model #1? What is the corresponding estimate	$\sigma^2 68.9 = 8.30t^2$ $\sigma 8.301$		
of σ ? What are the units (feet, pounds,	Units: <i>\$1,000</i>		
whatever) for the estimate of σ ?			
2. Calculate the residuals and fitted values from	model #1; base your answers on them.		
Plot residuals vs fitted, Normal plot, boxplot, Sh	apiro.test CIRCLE ONE (5 pts each)		
2.1 The 16 residuals for the highest pollution, no			
are all positive residuals.	(TRUE) FALSE		
2.2 The residuals appear to be skewed to the rig			
	(TRUE) FALSE		
2.3 The Shapiro-Wilk test suggests the residuals			
Normal	TRUE FALSE		
2.4 The Normal quantile plot suggests the residu			
Normal	TRUE FALSE		

PROBLEM SET #1 STATISTICS 500 FALL 2007: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone.

3. Fit model #2 on the data page and use it to answer the following questions.

3. Fit model #2 on the data page and use it to answer the following questions.				
Answer (5 points each part)				
Estimate of:				
γ_1 -13.3 β_1 -34.02				
Name: F-test Value: 218 on 3 & 502 df				
p-value: 2×10^{-76} CIRCLE ONE				
H_0 is Plausible Not Plausible				
In model #2: $R^3 = 0.57 = 57\%$				
In model #1: $R^3 = 0.18 = 18\%$				
Correlation: 0.42 CIRCLE ONE				
(i) Adequate basis (Other)				
(ii) Adequate basis (Other)				
CIRCLE ONE				
TRUE FALSE				
CIRCLE ONE				
TRUE FALSE				

4. In Model #2, test $H_0:\gamma_2=\gamma_3=0$. Which **variables** are in the full model? What is its **residual sum of squares** (RSS)? Which **variables** are in the reduced model? What is its **residual sum of squares** (RSS)? Give the numerical values of the **mean squares** in the numerator and denominator of the F ratio for testing H_0 . What is the numerical value of **F value**? What is the **p-value**? Is the null hypothesis **plausible**? (15 points)

I value: (in points)				
Full Model	Variables: nox, crim, rm	RSS: 18,488		
Reduced Model	Variables: nox	RSS: <i>34,731</i>		
Numerator and denominator of F	Numerator= 8,121	Denominator:= 36,83		
F= 220.5	p-value= 2.2×10^{-16}	CIRCLE ONE: Plausible Not Plausible		

Doing the Problem Set in R

```
PROBLEM SET #1 STATISTICS 500 FALL 2007
> attach(BostonHousing2)
What is the first thing we do with data?
> pairs(cbind(cmedv,crim,nox,rm))
> boxplot(cmedv)
> boxplot(crim)
> boxplot(nox)
> boxplot(rm)
Question 1. Fit model #1.
> summary(lm(cmedv~nox))
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 41.398 1.806 22.92 <2e-16 ***
nox -34.018 3.188 -10.67 <2e-16 ***
nox
Residual standard error: 8.301 on 504 degrees of freedom
Multiple R-Squared: 0.1843, Adjusted R-squared: 0.1827
F-statistic: 113.9 on 1 and 504 DF, p-value: < 2.2e-16
Question 1.4
> -34.018*(.5-.7)
[1] 6.8036
Question 1.5. It is simple arithmetic to get the 95% Cl; see Kleinbaum, et al (2008) section 5.7. I got tired of
the arithmetic and wrote a little R-function to do it once and for all. All it does is the formula from Kleinbaum, et
al. In the function, gt looks up the quantile (crit) in the t-table, and then it is just estimate +/- crit x standard
error. You can do this by hand or use Imci, which is in Rst500. RData.
> lmci
function(mod){
co<-(summary(mod))$coefficients</pre>
k < -dim(co)[1]
out<-matrix(NA,k,2)
rownames(out) <- rownames(co)
crit<-qt(.975,(summary(mod))$df[2])</pre>
out[,2]<-co[,1]+crit*co[,2]</pre>
out[,1]<-co[,1]-crit*co[,2]</pre>
colnames(out) <- c("low", "high")
out
ł
> lmci(lm(cmedv~nox))
                      low
                                hiqh
(Intercept) 37.84944 44.94734
            -40.28094 -27.75477
nox
```

Doing the Problem Set in R: PROBLEM SET #1 STATISTICS 500 FALL 2007 *Question 2: Residual Analysis.*

> plot(lm(cmedv~nox)\$fitted.values,lm(cmedv~nox)\$residual)

Question 2.1: The highest nox values are all in Cambridge, and all the residuals are positive – higher cost than you would expect given nox.

```
> lm(cmedv~nox)$residual[nox==.8710]
Question 2.2: Both the boxplot and the qq-plot suggest the residuals are skewed right. A skewed distribution is not
Normal. The Shapiro-Wilk test rejects the null hypothesis that the residuals are Normal.
> boxplot(lm(cmedv~nox)$residual)
> qqnorm(lm(cmedv~nox)$residual)
> shapiro.test(lm(cmedv~nox)$residual)
        Shapiro-Wilk normality test
     lm(cmedv ~ nox)$residual
data:
W = 0.856, p-value < 2.2e-16
Question 3.
> summary(lm(cmedv~nox+crim+rm))
Call:
lm(formula = cmedv ~ nox + crim + rm)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -19.02075 3.23054 -5.888 7.17e-09 ***
            <u>-13.32759</u> 2.64473 -5.039 6.53e-07 ***
nox
             -0.19878 0.03481 -5.710 1.93e-08 ***
crim
               7.90192 0.40551 19.486 < 2e-16 ***
rm
Residual standard error: 6.069 on 502 degrees of freedom
Multiple R-Squared: 0.5658,
                                 Adjusted R-squared: 0.5632
F-statistic: 218 on 3 and 502 DF, p-value: < 2.2e-16
> res<-lm(cmedv~nox+crim+rm)$residual</pre>
> fit<-lm(cmedv~nox+crim+rm)$fitted.values</pre>
> boxplot(res)
> qqnorm(res)
> plot(fit,res)
> lines(lowess(fit,res))
> shapiro.test(res)
        Shapiro-Wilk normality test
data: res
W = 0.8788, p-value < 2.2e-16
> cor(nox,crim)
```

Question 4, > anova(lm(cmedv~nox),lm(cmedv~nox+crim+rm))

```
Analysis of Variance Table
```

[1] 0.4209717

Model 1: cmedv ~ nox Model 2: cmedv ~ nox + crim + rm Res.Df RSS Df Sum of Sq F Pr(>F) 1 504 <u>34731</u> 2 502 <u>18488</u> 2 <u>16242</u> <u>220.50</u> < <u>2.2e-16</u> *** ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

F = (16242/2)/(18488/502) = 8,121/36.83=220.5

Statistics 500 Bulk Pack - 150 -

PROBLEM SET #2 STATISTICS 500 FALL 2007: DATA PAGE 1 Due in class Tuesday 4 December 2007

```
This is an exam. Do not discuss it with anyone.
```

Same data set as Problem #1. To learn about the dataset, type:

```
> help(BostonHousing2,package=mlbench)
```

BostonHousing package:mlbench R Documentation Housing data for 506 census tracts of Boston from the 1970 census. The dataframe 'BostonHousing' contains the original data by Harrison and Rubinfeld (1979), the dataframe 'BostonHousing2' the corrected version with additional spatial information (see references below).

Usage:

data(BostonHousing)

data(BostonHousing2)

Format:

The original data are 506 observations on 14 variables, 'medv' being the target variable:

crim per capita crime rate by town

zn proportion of residential land zoned for lots over 25,000 sq.ft

indus proportion of non-retail business acres per town
chas Charles River dummy variable (= 1 if tract bounds
 river; 0 otherwise)

nox nitric oxides concentration (parts per 10 million)
rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940 dis weighted distances to five Boston employment centres

rad index of accessibility to radial highways

tax full-value property-tax rate per USD 10,000

ptratio pupil-teacher ratio by town b 1000(B - 0.63)² where B is the proportion of blacks by

```
town
```

lstat percentage of lower status of the population

medv median value of owner-occupied homes in USD 1000's The corrected data set has the following additional columns:

cmedv corrected median value of owner-occupied homes in USD
1000's

town name of town

tract census tract

lon longitude of census tract

lat latitude of census tract

References:

Harrison, D. and Rubinfeld, D.L. (1978). Hedonic prices and the demand for clean air. *Journal of Environmental Economics and Management*, 5, 81-102.

PROBLEM SET #1 STATISTICS 500 FALL 2007: DATA PAGE 2

To obtain the data, you can do one of several things:

Get it directly:

- Go to the "packages" menu in R, click "load package" and click "mlbench" and type:
- > library(mlbench)
- > data(BostonHousing2)

Notice that you want BostonHousing2, NOT BostonHousing. You may wish to attach the data: > attach(BostonHousing2)

The data are also in the latest version of Rst500. RData and in an Excel file Bostonhousing2.xls at:: http://stat.wharton.upenn.edu/statweb/course/Fall-2007/STAT-500/ or http://download.wharton.upenn.edu/download/pub/stat/Fall-2007/ and Rst500. RData is also on my web page: http://www-stat.wharton.upenn.edu/~rosenbap/index.html

To obtain a Wharton username or password for course use, apply at:

http://apps.wharton.upenn.edu/accounts/class/

Use cmedu, not medu; here, cmedu contains the corrected values.

Do the following plots. You may wish to enhance the plots using as plot(x,y) lines(lowess(x,y)) You should describe a plot a clearly bent if the lowess fit shows a clear bend that departs from a straight line. You should describe a plot as fairly straight if the lowess fit looks more or less straight, with either just very slight bends, or wiggles without clear pattern. Plot A y=cmedv vs x=crim. Plot B y=log(cmedv) vs x=crim, Plot C y=log(cmedv) vs (crim)^{1/3}

Plot D y=cmedv vs log (crim)

Model #1

cmedv = $\beta_0 + \beta_1 \text{ nox} + \beta_2 \log(\text{crim}) + \beta_3 \text{ rm} + \beta_4 \text{ ptratio} + \beta_5 \text{ chas} + \epsilon$ with ϵ iid N(0, σ^2)

Let rm2c be centered squared rm, rm2c <- (rm-mean(rm))^2 *Model #2* cmedv = $\gamma_0 + \gamma_1 \text{ nox} + \gamma_2 \log(\text{crim}) + \gamma_3 \text{ rm} + \gamma_4 \text{ rm2c} + \gamma_5 \text{ ptratio} + \gamma_6 \text{ chas} + \zeta$

cmedv = $\gamma_0 + \gamma_1 \operatorname{nox} + \gamma_2 \log(\operatorname{crim}) + \gamma_3 \operatorname{rm} + \gamma_4 \operatorname{rm} 2c + \gamma_5 \operatorname{ptratio} + \gamma_6 \operatorname{chas} + \gamma_6 \operatorname{vith} \zeta \operatorname{iid} N(0, \omega^2)$

Follow instructions. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Name: _____

_____ ID#____ PROBLEM SET #2 STATISTICS 500 FALL 2007: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone.

1. See instructions on data page.	CIRCLE ONE		
Plot A y=cmedv versus x=crim	Fairly Straight Clearly Bent		
Plot B y=log(cmedv) versus x=crim	Fairly Straight Clearly Bent		
Plot C y=log(cmedv) versus (crim) ^{1/3}	Fairly Straight Clearly Bent		
Plot D y=cmedv versus log(crim)	Fairly Straight Clearly Bent		
If you want to straighten a plot using the log tranformation, you should try several bases, such as $log_e(y)$, $log_{10}(y)$, $log_2(y)$, because one base may do a better job of straightening than another.	True False		
The transformation $(y^{p}-1)/p$ has the advantage over y^{p} in that the former, but not the latter, can take the reciprocal $1/y$ by letting p tend to infinity.	True False		
If $log_2(y)$ - $log_2(x) = 4$, then you must double x four times to get y, that is, $y = 2^4 x = 16x$.	True False		
2. Fit model #1 on data page and assume it i			
	CIRCLE ONE		
2.1 The hypothesis H_0 : $\beta_2=0$ is rejected in a conventional two-sided 0.05 level test, where variable 2 is log(crim).	TRUE FALSE		
2.2 Which observation has the largest absolute studentized = jackknife = deleted residual? Give the row #, the name of the town, and the value of the studentized residual.	Row # Value: Name:		
2.3 Continuing question 2.2, test the null hypothesis that there are no outliers in model #1. What is the numerical value of the test statistic? What is the two-sided p- value corrected for testing multiple hypotheses ? What are the degrees of freedom ? How many hypotheses were			
tested in testing for outliers? Is it plausible that there are no outliers?	Plausible Not Plausible		

Name: ID#					
PROBLEM SET #2 STATISTICS 500 FALL 2007: ANSWER PAGE 2					
This is an exam. Do not discuss it with anyone.					
3.Continue to use model #1 on data page.	CIR	CLE ONE			
3.1 What is the numerical value of the					
largest leverage or hatvalue? What is the	Value:	_ Row #			
row number for this observation? What is	Name of town:				
the name of this town ? In this data set,					
what is the numerical cut off for judging a	Numerical cut off:				
leverage value to be large?					
3.2 In 3.1, the town has large leverage					
because cmedv is close to the median					
while rm is the maximum, but in model #1,	TRUE	FALSE			
more rooms usually raised the value of the					
home, leading to a negative residual.					
3.3 What is the numerical value of the					
largest absolute dffits? What is the row	Value:	Row #			
number for this observation? What is the	Name of town:				
name of this town? If one added this					
observation to the regression based on the	TRUE	FALSE			
505 other observations, the fitted value					
would rise by more than one standard error.					
3.4 In question 3.3, the dffits was large					
because the homes were expensive	TRUE	FALSE			
(cmedv) despite fairly high pollution					
(nox), fairly high ptratio, and below					
median number of rooms (rm).					
4. Fit model 2 on the data page, assume it to	be true, and use it	to answer question 4.			
	CIR	CLE ONE			
4.1 Houses in tracts along the Charles					
River are estimated to be valued at 3.841	TRUE	FALSE			
times more than houses in similar tracts not					
along the Charles River.					
4.2 The relationship between median home					
values (cmedv) and the average number of					
rooms is shaped like a hill, an upside down	TRUE	FALSE			
U, so tracts with middle values of rm have					
the highest median values.					
4.3 Test the hypothesis that the relationship					
is between cmedv and rm is linear, not					
quadratic, that is, test $H_0: \gamma_4=0$. What is the	Name:	Value:			
name of the test statistic? What is the					
value of the test statistic? Is the null	Plausible	Not plausible			
hypothesis plausible?					
4.4 If question 2.1 were asked about γ_2 in					
model #2, what would the answer be?	TRUE	FALSE			

PROBLEM SET #2 STATISTICS 500 FALL 2007: ANSWER PAGE 1				
1. See the data page for instructions.	CIRCLE ONE (5 points each)			
Plot A y=cmedv versus x=crim	Fairly Straight Clearly Bent			
Plot B y=log(cmedv) versus x=crim	Fairly Straight Clearly Bent			
Plot C y=log(cmedv) versus (crim) ^{1/3}	Fairly Straight Clearly Bent			
Plot D y=cmedv versus log(crim)	Fairly Straight Clearly Bent			
If you want to straighten a plot using the log tranformation, you should try several bases, such as $log_e(y)$, $log_{10}(y)$, $log_2(y)$, because one base may do a better job of straightening than another.	True False			
The transformation $(y^{p}-1)/p$ has the advantage over y^{p} in that the former, but not the latter, can take the reciprocal $1/y$ by letting p tend to infinity.	True False			
If $log_2(y) - log_2(x) = 4$, then you must double x four times to get y, that is, $y = 2^4 x = 16x$.	True False			
2. Fit model #1 on data page and assume it i	s true for the purpose of question 2.			
CIRCLE ONE				
2.1 The hypothesis H_0 : $\beta_2=0$ is rejected in a conventional two-sided 0.05 level test, where variable 2 is log(crim). (5 points)	TRUE FALSE			
2.2 Which observation has the largest absolute studentized = jackknife = deleted residual? Give the row #, the name of the town, and the value of the studentized residual. (6 points)	Row # 369 Value: 7.46 Name: Boston Back Bay			
2.3 Continuing question 2.2, test the null hypothesis that there are no outliers in model #1. What is the numerical value of the test statistic? What is the two-sided p - value corrected for testing multiple hypotheses? What are the degrees of freedom? How many hypotheses were tested in testing for outliers? Is it plausible	Value: 7.46 (same as studentized residual) Easy way to get p-value: add an outlier dummy to model! P-value: 1.89 x 10 ⁻¹⁰ = 506 x 3.74x10 ⁻¹³ Degrees of Freedom: 499 How many: 506 e			

DDODLEN SET #2 STATISTICS 500 EALL 2007. ANSWED DACE 1

that there are no outliers? (6 points)	Plausible Not Plausible			
PROBLEM SET #2 STATISTICS 5	CS 500 FALL 2007: ANSWER PAGE 2			
3.Continue to use model #1 on data page.	CIRCLE ONE (6 points each)			
3.1 What is the numerical value of the				
largest leverage or hatvalue? What is the	Value: 0.070 Row # 365			
row number for this observation? What is	Name of town:			
the name of this town? In this data set,	Boston Back Bay			
what is the numerical cut off for judging a				
leverage value to be large?	Numerical cut off: $0.0237 = 2(5+1)/506$			
3.2 In question 3.1, this town has large				
leverage because cmedv is close to the				
median while rm is the maximum, whereas	TRUE FALSE			
in model #1, more rooms usually raised the				
value of the home, leading to a negative				
residual.				
3.3 What is the numerical value of the				
largest absolute dffits? What is the row	Value: 1.045 Row # 373			
number for this observation? What is the	Name of town: Boston Beacon Hill			
name of this town? If one added this				
observation to the regression based on the	TRUE FALSE			
505 other observations, the fitted value				
would rise by more than one standard error.				
3.4 In question 3.3, the dffits was large				
because the homes were expensive	TRUE FALSE			
(cmedv) despite fairly high pollution				
(nox), fairly high ptratio, and below				
median number of rooms (rm).				
4. Fit model 2 on the data page, assume it to				
	CIRCLE ONE (6 points each)			
4.1 Houses in tracts along the Charles				
River are estimated to be valued at 3.841	TRUE FALSE			
times more than houses in similar tracts not				
along the Charles River.				
4.2 The relationship between median home				
values (cmedv) and the average number of				
rooms is shaped like a hill, an upside down	TRUE FALSE			
U, so tracts with middle values of rm have				
the highest median values.				
4.3 Test the hypothesis that the relationship				
is between cmedv and rm is linear, not $\frac{1}{2}$	Name: t-statistic Value: 10,8			
quadratic, that is, test $H_0: \gamma_4=0$. What is the name of the test statistic? What is the	Name: <i>t-statistic</i> Value: 70,8			
value of the test statistic? What is the				
hypothesis plausible ?	Plausible (Not plausible)			
4.4 If question 2.1 were asked about γ_2 in model #2, what would the answer be?	TRUE FALSE			
model #2, what would the answer be?	TRUE FALSE			

```
PROBLEM SET #2 STATISTICS 500 FALL 2007
Doing the Problem Set in R
> library(mlbench)
```

```
> data(BostonHousing2)
> d<-BostonHousing2</pre>
> attach(d)
Question 1:
> plot(crim^(1/3),log(cmedv))
> lines(lowess(crim<sup>(1/3)</sup>, log(cmedv)))
> plot(log(crim),cmedv)
> lines(lowess(log(crim),cmedv))
Question 2:
> mod<-lm(cmedv ~ nox+log(crim) + rm + ptratio +chas)</pre>
> summary(mod)
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 7.4403 5.0908 1.462 0.145
nox-15.68943.7170-4.2212.89e-05***log(crim)-0.19820.2084-0.9510.342rm6.82920.401717.001< 2e-16</td>***ptratio-1.06060.1371-7.7345.77e-14***chas4.22891.01864.1523.88e-05***
___
> which.max(abs(rstudent(mod)))
369
> max(rstudent(mod))
[1] 7.464907
> min(rstudent(mod))
[1] -3.075885
> \dim(d)
[1] 506 19
The conceptually easy way is to do a dummy variable regression and adjust the p-value using the Bonferroni inequality.
> testout<-rep(0,506)</pre>
> testout[369]<-1</pre>
> summary(lm(cmedv ~ nox+log(crim) + rm + ptratio +chas+testout))
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.5657 4.8397 1.150 0.251
nox-15.08403.5298-4.2732.31e-05***log(crim)-0.24700.1980-1.2480.213rm7.03450.382418.397< 2e-16</td>***ptratio-1.05370.1302-8.0934.47e-15***chas4.25720.96704.4021.31e-05***testout40.66805.44797.4653.74e-13***
Bonferroni inequality: multiply p-value by #tests; reject if <0.05. (Can be > 1; it's an inequality!)
> (3.74e-13)*506
[1] 1.89244e-10
```

PROBLEM SET #2 STATISTICS 500 FALL 2007 Doing the Problem Set in R, continued

Question 3; > summary(hatvalues(mod)) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.002178 0.005978 0.008229 0.011860 0.012610 0.070160 > which.max(hatvalues(mod)) 365 > d[365,c(1,6,7,10,11,12,16)] town cmedv crim chas nox rm tax 365 Boston Back Bay 21.9 3.47428 1 0.718 8.78 666 > summary(dffits(mod)) Min. 1st Qu. Median Mean 3rd Qu. Max. -0.844900 -0.053880 -0.006664 0.004587 0.031590 1.045000> which.max(dffits(mod)) 373 > d[373,c(1,6,7,10,11,12,16)] town cmedv crim chas nox rm tax 373 Boston Beacon Hill 50 8.26725 1 0.668 5.875 666 Question 4: > $rm2c < -(rm-mean(rm))^2$ > mod2<-lm(cmedv ~ nox + log(crim) + rm +rm2c+ ptratio + chas)</pre> > summary(mod2) Coefficients: Estimate Std. Error t value Pr(>|t|)

 (Intercept)
 5.4266
 4.5917
 1.182
 0.23784

 nox
 -14.8874
 3.3507
 -4.443
 1.09e-05

 log(crim)
 -0.5486
 0.1906
 -2.878
 0.00417
 **

 rm
 6.0683
 0.3688
 16.453
 < 2e-16</td>

 rm2c
 2.7110 0.2511
 10.798 < 2e-16</td>

 ptratio
 -0.8023
 0.1259
 -6.373
 4.21e-10

 chas
 3.8412 0.9187
 4.181
 3.42e-05

 Residual standard error: 5.145 on 499 degrees of freedom Multiple R-Squared: 0.6897, Adjusted R-squared: 0.686 F-statistic: 184.9 on 6 and 499 DF, p-value: < 2.2e-16 chas=1 adds \$3,841; it doesn't multiply by 3.841. In the quadratic in room, a + bx + cx², the quadratic term, c, or γ_4 , is estimated at 2.71, positive, so U shaped.

PROBLEM SET #3 STATISTICS 500 FALL 2007: DATA PAGE 1

Due Thursday 13 December 2007 at noon in my office 473 Huntsman. In you wish to turn it in early, put it in sealed envelop addressed to me and leave it in my mail box in Statistics, Huntsman 4th floor. **Make & keep a photocopy of your answer page**. If you would like your exam + answer key, include a ordinary stamped self addressed envelope.

```
This is an exam. Do not discuss it with anyone.Same data set as Problem #1. To learn about the dataset, type:> help(BostonHousing2,package=mlbench)Format:crimper capita crime rate by townznproportion of residential land zoned for lots over25,000 sq.ft
```

```
25,000 sq.ft

nox nitric oxides concentration (parts per 10 million)

rm average number of rooms per dwelling

age proportion of owner-occupied units built prior to 1940

tax full-value property-tax rate per USD 10,000

ptratio pupil-teacher ratio by town

The corrected data set has the following additional columns:

cmedv corrected median value of owner-occupied homes in USD

1000's

To obtain the data, you can do one of several things:
```

Get it directly:

Go to the "packages" menu in R, click "load package" and click "mlbench" and type:

```
> library(mlbench)
```

```
> data(BostonHousing2)
```

Notice that you want BostonHousing2, NOT BostonHousing. You may wish to attach the data:

> attach(BostonHousing2)

```
The data are also in the latest version of Rst500, RData and in an Excel file Bostonhousing2, xls at;;
http://stat.wharton.upenn.edu/statweb/course/Fall-2007/STAT-500/
and Rst500, RData is also on my web page;
```

http://www-stat.wharton.upenn.edu/~rosenbap/index.html

```
\begin{array}{l} cmedv \ = \beta_0 + \beta_1 \, crim + \beta_2 \, zn + \ \beta_3 \, nox + \beta_4 \, rm + \beta_5 \, age + \beta_6 \, tax + \beta_7 \, ptratio + \epsilon \\ with \, \epsilon \, iid \, N(0, \sigma^2) \end{array}
```

Model #2:

cmedv = $\beta_0 + \beta_1 \operatorname{crim} + \beta_3 \operatorname{nox} + \beta_4 \operatorname{rm} + \beta_7 \operatorname{ptratio} + \varepsilon$

Model #3:

 $cmedv = \beta_0 + \beta_1 crim + \beta_2 zn + \beta_3 nox + \beta_4 rm + \beta_7 ptratio + \epsilon$

Model #4:

 $cmedv = \beta_0 + \beta_1 crim + \beta_2 zn + \beta_3 nox + \beta_5 age + \beta_6 tax + \beta_7 ptratio + \epsilon$

PROBLEM SET #3 STATISTICS 500 FALL 2007: DATA PAGE 2

The second data set, "SantaAna" is from Gonsebatt, et al. (1997) Cytogenetic effects in human exposure to arsenic, *Mutation Research*, 386, 219-228. The town of Santa Ana (in Mexico) has a fairly high level of arsenic in drinking water, whereas Nazareno has a much lower level. The data set has 14 males (M) and 14 females (F) from Nazareno (labeled Control) and 14 males (M) and 14 females (F) from Santa Ana (labeled Exposed). For these 56 individuals, samples of oral epithelial cells were obtained and the frequency (Y) of micronuclei per thousand cells upon cell division was determined, Y=Mnbuccal. You are to do an analysis of variance with four groups MC=(Malecontrol), FC = (Female-control), ME = (Male-exposed), FE=(Female-exposed). For groups g = MC, FC, ME, FE, and individuals i=1,2,...,14 the model is:

 $(Y_{gi})^{1/3} = \mu + \tau_g + \varepsilon_{gi}$ with $\varepsilon_{gi} \sim \text{iid } N(0,\sigma^2)$ Model #5 The cube root, $(Y_{gi})^{1/3}$, is taken to make the variances more equal. You must take the cube root in your analysis.

SantaAna is in the latest Rst500, RData. You will need to download the latest copy. The data are in the latest version of Rst500, RData and in an plain text file SantaAna, txt at:: <u>http://stat.wharton.upenn.edu/statweb/course/Fall-2007/STAT-500/</u> and Rst500, RData is also on my web page: <u>http://www-stat.wharton.upenn.edu/~rosenbap/index.html</u>

```
> dim(SantaAna)
[1] 56 6
> SantaAna[1:3,]
    Group Code Age Sex YearRes Mnbuccal
1 Control 236 36 M 36 0.58
2 Control 88629 37 M 37 0.49
3 Control 96887 38 M 38 0.00
```

Question 5 asks you to construct three orthogonal contrast, one for Santa Ana (exposed) vs Nazareno (control), one for Male vs Female, and one for the interaction (or difference in differences) which asks whether the male-female difference is different in Santa Ana and Nazareno.

Follow instructions. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Name:	ID#			
PROBLEM SET #3 STATISTICS 500 FALL 2007: ANSWER PAGE 1				
	ot discuss it with anyone.			
1 . Refer to Models #1, 2, 3, 4 for the	Fill in the answer or			
BostonHousing2 data to answer these	CIRCLE the correct choice.			
questions. Assume Model #1 is true.				
1.1 If you include the model with no				
predictors and model #1, how many models				
can be formed as submodels of model #1	Number of models =			
by removing some (none, all) predictor				
variables.				
1.2 What is the value of C_P when model #2				
is viewed as a submodel of model #1?	C _P for model #2:			
What is the value of C_P when model #3 is				
viewed as a submodel of model #1? What	C _P for model #3:			
is the value of C_P when model #4 is viewed				
as a submodel of model #1?	C _P for model #4:			
1.3 Of models 1, 2, 3, and 4, which one				
does C_P estimate will make the smallest				
total squared prediction errors? Give one	Model number			
model number.				
1.4 Of models 1, 2, 3, and 4, for which				
model or models is the value of C _P	Model number(s):			
compatible with the claim that this model				
contains all the variables with nonzero				
coefficients? Write the number or numbers				
of the models. If none, write "none".	CIRCLE ONE			
1.5 C _P estimates that the total squared prediction errors from model 4 are more	CIRCLE ONE			
than 300 times greater than from model 1.	TRUE FALSE			
1.6 In model #1, which variable has the	IKOL IMLSL			
largest variance inflation factor (vif)?	Name of one variable:			
What is the value of this vif?				
	Value of vif:			
1.7 For the variable you identified in				
question 1.6, what is the R^2 for this				
variable when predicted from the other 6	R ² =			
predictors in model #1? What is the				
Pearson (ordinary) correlation between this				
variable and its predicted values using the	Pearson correlation =			
other 6 predictors in model #1?				
1.8 C_P always gets smaller when a variable				
with a vif > 10 is added to the model.	TRUE FALSE			
1.9 Because the variable in question 1.6				
has the largest vif, it is the best single	TRUE FALSE			
predictor of Y=cmedv.				

Name:

ID#

PROBLEM SET #3 STATISTICS 500 FALL 2007: ANSWER PAGE 2

This is an exam. Do not discuss it with anyone.

2. Use the SantaAna data and model #5 to perform the following analysis of variance describing the four groups of 14 subjects. Assume model #5 is true for all questions.

Source of	Sum of	Degrees of	Mean Square	F -statistic	p -value
Variation	Squares (SS)	Freedom (DF)	(MS)		
Between					
Groups					
(regression)					
Within					
Groups					
(residual)					

Based on the analysis above, is it plausible that there is no difference in $Y^{1/3}$ by town and gender? CIRCLE ONE

PLAUSIBLE NOT PLAUSIBLE

3. Use Tukey's two sided, 0.05 level multiple comparison method to compare the groups in all pairs. Circle all the pairs of two groups that differ significantly by this method. Example, if MC and FC differ significantly, circle (MC,FC).

(MC,FC) (MC,FE) (ME,FC) (ME,FE) (MC,ME) (FC,FE)

4. In Tukey's method as used in question 3, suppose that in model #5, unknown to us, $\tau_{MC} = \tau_{FC} < \tau_{ME} = \tau_{FE}$, so exposure matters but gender does not. Assuming this supposition is true, circle the correct answers.

II			
The chance that Tukey's method finds a significant	TRUE	FALSE	
difference between any two groups is at most 0.05.			
The chance that Tukey's method rejects	TRUE	FALSE	
H ₀ : $\tau_{MC} = \tau_{FC}$ is at most 0.05.			
The chance that Tukey's method rejects	TRUE	FALSE	
H ₀ : $\tau_{MC} = \tau_{ME}$ is at most 0.05.			
The chance that Tukey's method rejects	TRUE	FALSE	
H ₀ : $\tau_{MC} = \tau_{FC}$ or rejects H ₀ : $\tau_{ME} = \tau_{FE}$ is at most 0.05.			

5. Use 3 orthogonal contrasts to partition the anova table in question 2, and fill in the following table. Also, give the variance inflation factor (vif) for each contrast.

Source	SS	DF	MS	F	p-value	vif
Santa Ana vs						
Nazareno						
Male vs						
Female						
Difference						
in						
differences						

PROBLEM SET #3 STATISTICS 5	00 FALL 2007: ANSWER PAGE 1
1. Refer to Models #1, 2, 3, 4 for the	Fill in the answer or
BostonHousing2 data to answer these	CIRCLE the correct choice.
questions. Assume Model #1 is true.	3 points each, 27 total
1.1 If you include the model with no	
predictors and model #1, how many models	
can be formed as submodels of model #1	Number of models = $2^7 = 128$
by removing some (none, all) predictor	
variables.	
1.2 What is the value of C_P when model #2	
is viewed as a submodel of model #1?	C_P for model #2: 4.44
What is the value of C_P when model #3 is	C _P for model #3: <i>6.00</i>
viewed as a submodel of model #1? What	C_P for model #4: 304,88
is the value of C_P when model #4 is viewed	Cp 101 1110del #4. 507,00
as a submodel of model #1?	
1.3 Of models 1, 2, 3, and 4, which one	
does C _P estimate will make the smallest	
total squared prediction errors? Give one	Model number: #2
model number.	
1.4 Of models 1, 2, 3, and 4, for which	
model or models is the value of C_P	Model number(s): <i>#1, 2, 3</i>
compatible with the claim that this model	
contains all the variables with nonzero	
coefficients? Write the number or numbers	
of the models. If none, write "none".	
1.5 C_P estimates that the total squared	CIRCLE ONE
prediction errors from model 4 are more	
than 300 times greater than from model 1.	TRUE (FALSE)
1.6 In model #1, which variable has the	
largest variance inflation factor (vif)?	Name of one variable: non
What is the value of this vif?	Value of vif: 3,46
1.7 For the variable you identified in	
question 1.6, what is the R^2 for this	
variable when predicted from the other 6	R ² = 0.7108 = 1-1/3.4573 = 1-(1/vif)
predictors in model #1? What is the	$\mathbf{K} = 0,1100 - 1-1/3,4513 = 1-(1/04g)$
Pearson (ordinary) correlation between this	
variable and its predicted values using the	D_{1}
other 6 predictors in model #1?	Pearson correlation = $0.843 = (0.7108)^{1/2}$
1.8 C_P always gets smaller when a variable	
with a vif > 10 is added to the model.	TRUE FALSE
	INUE TALSE
1.9 Because the variable in question 1.6	TRUE FALSE
has the largest vif, it is the best single	INUE FALSE
predictor of Y=cmedv.	

PROBLEM SET #3 STATISTICS 500 FALL 2007: ANSWER PAGE 2 This is an exam. Do not discuss it with anyone.

2. Use the SantaAna data and model #5 to perform the following analysis of variance describing the four groups of 14. Assume model #5 is true for all questions. 20pts

Source of	Sum of	Degrees of	Mean Square	F -statistic	p -value
Variation	Squares (SS)	Freedom (DF)	(MS)		
Between					
Groups	2.008	3	0.669	1.8	0.16
(regression)					
Within					
Groups	19,356	52	0.372		
(residual)			• • •		

Based on the analysis above, is it plausible that there is no difference in $Y^{1/3}$ by town and gender? CIRCLE ONE

PLAUSIBLE NOT PLAUSIBLE **3**. Use Tukey's two sided, 0.05 level multiple comparison method to compare the groups in all pairs. Circle all the pairs of two groups that differ significantly by this method. Example, if MC and FC differ significantly, circle (MC,FC). (12 points) *None are significant!*

(MC,FC) (MC,FE) (ME,FC) (ME,FE) (MC,ME) (FC,FE) **4.** In Tukey's method as used in question 3, suppose that in model #5, unknown to us, $\tau_{MC} = \tau_{FC} < \tau_{ME} = \tau_{FE}$, so exposure matters but gender does not. Assuming this supposition is true, circle the correct answers. (20 points) *Takey's method controls the chance of falsely rejecting any true hypothesis – you don't want to reject true hypotheses – bat it tries to reject false*

hypotheses. You cannot falsely reject a false hypothesis!

The chance that Tukey's method finds a significant	TRUE FALSE
difference between any two groups is at most 0.05.	
The chance that Tukey's method rejects	TRUE FALSE
H ₀ : $\tau_{MC} = \tau_{FC}$ is at most 0.05.	
The chance that Tukey's method rejects	TRUE FALSE
$H_0: \tau_{MC} = \tau_{ME}$ is at most 0.05.	
The chance that Tukey's method rejects	TRUE FALSE
H ₀ : $\tau_{MC} = \tau_{FC}$ or rejects H ₀ : $\tau_{ME} = \tau_{FE}$ is at most 0.05.	

5. Use 3 orthogonal contrasts to partition the anova table in question 2, and fill in the following table. Also, give the variance inflation factor (vif) for each contrast.(21 points)

Tonowing table. This, give the variance initiation factor (vir) for each contrast.(21 points)							
Source	SS	DF	MS	F	p-value	vif	
Santa Ana	1,145	1	1,146	3.1	0,085	1	
vs Nazareno							
Male vs	0,504	1	0.504	1.4	0.24	1	
Female							
Difference	0,359	1	0,359	0.96	0.33	1	
in							
differences							

Sums of squares partition with orthogonal contrasts: 2,008 = 1,145 + 0,504 + 0,359. There is no variance inflation in a balanced design with orthogonal (uncorrelated) contrasts.

> library(mlbench) > data(BostonHousing2) > X<-BostonHousing2[,c(7,8,11,12,13,16,17)]</pre> > X[1:3,]crim zn nox rm age tax ptratio 1 0.00632 18 0.538 6.575 65.2 296 15.3 2 0.02731 0 0.469 6.421 78.9 242 17.8 3 0.02729 0 0.469 7.185 61.1 242 17.8 The first time you use leaps, you must install it from the web. Each time you use leaps, you must request it using library (.). You must do library (leaps) before help (leaps). > library(leaps) > help(leaps) > modsearch<-leaps(x=X,y=cmedv,names=colnames(X))</pre> > cbind(modsearch\$which,modsearch\$Cp) crim zn nox rm age tax ptratio 0 0 0 1 0 0 0 170.405285 1 1 469.502583 0 512.474253 0 562.680462 0 605.132128 1 0 0 0 0 0 0

 0
 0
 0
 0
 1

 0
 0
 1
 0
 0
 1

 1
 0
 0
 0
 0
 0

 1 1 1 0 0 0 0 1 0 0 616.737365 etc. 1 1 0 1 1 0 0 1 4.438924 *Model #2* 4 1 6.002240 Model #3 1 1 1 1 0 0 5 1 1 1 0 1 1 1 304.882166 Model #4 6 7 1 1 1 1 1 1 1 8.000000 Model #1 The last column is Cp. > library(DAAG) > help(vif) > mod<-lm(cmedv~crim+zn+nox+rm+age+tax+ptratio)</pre> > vif(mod) nox crim tax ptratio zn rm age 1.5320 1.8220 3.4573 1.2427 2.4461 2.8440 1.6969 > summary(lm(nox~ crim + zn + rm + age + tax + ptratio)) Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.534e-01 4.468e-02 14.624 < 2e-16 *** crim 1.083e-04 4.014e-04 0.270 0.787513 -9.809e-04 1.554e-04 -6.313 6.07e-10 *** zn -1.451e-02 4.378e-03 -3.313 0.000988 *** rm 1.720e-03 1.345e-04 12.786 < 2e-16 *** 3.303e-04 2.368e-05 13.948 < 2e-16 *** aqe tax ptratio -1.352e-02 1.566e-03 -8.637 < 2e-16 *** Residual standard error: 0.06269 on 499 degrees of freedom Multiple R-Squared: 0.7108, Adjusted R-squared: 0.7073 F-statistic: 204.4 on 6 and 499 DF, p-value: < 2.2e-16 > sqrt(0.7108) [1] 0.8430896

Doing the Problem Set in R (Problem 3, Fall 2007)

```
Doing the Problem Set in R (Problem 3, Fall '07), Continued
See 2006, problem set 3, for text commentary; it's the same.
> attach(SantaAna)
> mn3<-Mnbuccal^(1/3)</pre>
> boxplot(mn3~Sex:Group)
> gr<-Sex:Group
> gr
 [1] M:Control M:Control M:Control M:Control M:Control etc.
> summary(aov(mn3~gr))
            Df Sum Sq Mean Sq F value Pr(>F)
            3 2.0080 0.6693 1.7982 0.159
ar
            52 19.3556 0.3722
Residuals
> TukeyHSD(aov(mn3~gr))
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = mn3 ~ qr)
$qr
                           diff
                                       lwr
                                                 upr
F:Exposed-F:Control 0.12597723 -0.4860490 0.7380035
M:Control-F:Control 0.02965799 -0.5823682 0.6416842
M:Exposed-F:Control 0.47575824 -0.1362680 1.0877845
M:Control-F:Exposed -0.09631924 -0.7083455 0.5157070
M:Exposed-F:Exposed 0.34978101 -0.2622452 0.9618072
M:Exposed-M:Control 0.44610025 -0.1659260 1.0581265
> expo<-c(-1,1,-1,1)</pre>
> gend<-c(1,1,-1,-1)</pre>
> genexp<-expo*gend</pre>
> contrasts(gr)<-cbind(expo,gend,genexp)</pre>
> contrasts(gr)
          expo gend genexp
F:Control -1 1 -1
           1
F:Exposed
                  1
                         1
M:Control
            -1
                 -1
                         1
           1
                -1
M:Exposed
                        -1
> h<-model.matrix(mn3~gr)</pre>
> h
> Expo < -h[,2]
> Gend<-h[,3]
> ExGe < -h[, 4]
> summary(lm(mn3~Expo+Gend+ExGe))
> anova(lm(mn3~Expo+Gend+ExGe))
Analysis of Variance Table
Response: mn3
          Df Sum Sq Mean Sq F value Pr(>F)
          1 1.1455 1.1455 3.0773 0.08528 .
Expo
           1 0.5039 0.5039 1.3538 0.24993
Gend
ExGe
           1 0.3587 0.3587 0.9636 0.33083
Residuals 52 19.3556 0.3722
> vif(lm(mn3~Expo+Gend+ExGe))
Expo Gend ExGe
   1 1
             1
> hatvalues(lm(mn3~Expo+Gend+ExGe))
```

PROBLEM SET #1 STATISTICS 500 FALL 2008: DATA PAGE 1 Due in class Tuesday Oct 28 at noon.

This is an exam. Do not discuss it with anyone.

The data are from the Fed and concern subprime mortgages. You do not have to go to the Fed web page, but it is interesting: <u>http://www.newyorkfed.org/mortgagemaps/</u> The data describe subprime mortgages in the US as of August 2008. The first two lines of data are below for Arkansas (AK) and Alabama (AL).

Column		Column		, _ 		Column	
1	Column 7	10	Column 13	Column 36	Column 38	48	
Property	Average	Average	Average	Percent with	Percent of	Percent	
State	current	FICO	combined LTV	no or low	cash-out	ARM	
		score					
	interest rate	(b)	at origination	documentation	refinances	loans	
	-	Definition	Definition	Definition	Definition	Definition	Y
AK	8.50	614	87.36	28.0%	53.3%	75.2%	16.8%
AL	9.20	602	87.66	20.6%	52.2%	53.5%	21.5%

State-Level Subprime Loan Characteristics, August 2008

The following definitions are from the Fed spreadsheet:

-- rate is the current mortgage interest rate. For adjustable rate mortgages, the rate may reset to a higher interest rate, perhaps 6% higher.

-- **fico** is a credit bureau risk score. The higher the FICO score, the lower the likelihood of delinquency or default for a given loan. Also, everything else being equal, the lower the FICO score, the higher will be the cost of borrowing/interest rate.

-- **Itv** stands for the combined Loan to Value and is the ratio of the loan amount to the value of the property at origination. Some properties have multiple liens at origination because a second or "piggyback" loan was also executed. Our data capture only the information reported by the first lender. If the same lender originated and securitized the second lien, it is included in our LTV measure. Home equity lines of credit, HELOCS, are not captured in our LTV ratios.

-- lowdoc Percent Loans with Low or No Documentation refers to the percentage of owner-occupied loans for which the borrower provided little or no verification of income and assets in order to receive the mortgage.

-- cashout Cash-Out Refinances means that the borrower acquired a nonprime loan as a result of refinancing an existing loan, and in the process of refinancing, the borrower took out cash not needed to meet the underwriting requirements.

-- arms stands for adjustable rate mortgages and means that the loans have a variable rate of interest that will be reset periodically, in contrast to loans with interest rates fixed to maturity. All ARMs in this spreadsheet refer to owner-occupied mortgages.

-- Y the percent of subprime mortgages that are in one of the following categories: (i) a payment is at least 90 days past due, (ii) in the midst of foreclosure proceedings, or (iii) in REO meaning that the lender has taken possession of the property. (It is the sum of columns 25, 26 and 28 in the Fed's original spreadsheet.) In other words, Y is measures the percent of subprime loans that have gone bad.

Notice that some variables are means and others are percents.

PROBLEM SET #1 STATISTICS 500 FALL 2008: DATA PAGE 2

The data set is at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ If you are using R, then it is in the **subprime** data.frame of the latest version of the **Rst500.Rdata** workspace; you need to download the latest version. There is also a text file **subprime.txt**, whose first line gives the variable names. *Model #1* $Y = \beta_0 + \beta_1 \text{rate} + \beta_2 \text{fico} + \beta_3 \text{ltv} + \beta_4 \text{lowdoc} + \beta_5 \text{cashout} + \beta_6 \text{arms} + \varepsilon$ with ε iid N(0, σ^2) *Model #2* $Y = \gamma_0 + \gamma_1 \text{ltv} + \gamma_2 \text{lowdoc} + \gamma_3 \text{cashout} + \gamma_4 \text{arms} + \zeta$ with ζ iid N(0, ω^2)

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary. A slope by any other name would tilt the same.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Refer to states by their two-letter abbreviations.

Name:	ID#	

PROBLEM SET #1 STATISTICS 500 FALL 2008: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. Due in class Tuesday 28 Oct noon.

1. Which state has the largest Y? Which state has the smallest Y? What are the values of the predictors for these two states? What are the quartiles of Y?

of the predictors for these two states? What the the quantites of 1.								
	state	rate	fico	ltv	lowdoc	cashout	arms	Y
Max Y								
Min Y								
		Lov	ver Quartil	le	Median	l I	Upper Q	uartile
	Y							

2. Fit model #1 defined on the data page.

2. Fit model #1 defined on the data page.	
Question	CIRCLE ONE or Fill in the Answer
2.1 When you plot Y (vertical) against	
X=lowdoc (horizontal), which state is in the	
upper right corner of the plot (high Y, high X)?	
2.2 When you plot Y (vertical) against	
X=lowdoc (horizontal), which state is in the	
lower right corner of the plot (low Y, high X)?	
2.3 In the fit of model #1, what is the two-	
sided p-value for testing the null hypothesis	
H ₀ : β_1 =0, where β_1 is the coefficient of rate .?	
2.4 In model #1, what is the two-sided 95%	Г I
confidence interval for β_1 ?	[,]
2.5 In model #1, there can be no plausible	
doubt that $\beta_1 > 0$, that is, no plausible doubt that	
higher rates of bad subprime loans (Y) are	TRUE FALSE
associated with higher current interest rates on	
those loans.	
2.6 What is the estimate of σ in model #1?	
2.7 What is the correlation between Y and the	
fitted value for Y in model #1? (Read this	
question carefully.)	
2.8 Suppose two states had identical predictors	
except that lowdoc was 2 units (2%) higher in	
state 1 than in state 2. Using the estimate of β_4	TRUE FALSE
in model #1, the first state is predicted to have	
1.11% more bad loans.	
2.9 Do a normal quantile plot and a Shapiro-	
Wilk test of the normality of the residuals in	TRUE FALSE
model #1. These clearly indicate the residuals	
are not Normally distributed.	

Name: ____

_____ ID# ____

PROBLEM SET #1 STATISTICS 500 FALL 2008: ANSWER PAGE 2 This is an exam. Do not discuss it with anyone.

3. Fit model #2 on the data page. Question 3 refers to both model #1 and model #2, so make sure you use the correct model to answer each question.

Question	CIRCLE ONE or Fill in the Answer
3.1 Give the two-sided p-value for testing H ₀ : $\beta_2=0$	
in model #1 (the coefficient of fico).	
3.2 Given the results of questions 2.3 and 3.1, it is	
reasonable to remove both rate and fico from	TRUE FALSE
model #1 and use model #2 instead.	
3.3 Give the two-sided p-value for testing $H_0: \beta_6=0$	
in model #1 (the coefficient of arms).	
3.4 Give the two-sided p-value for testing $H_0: \gamma_4=0$	
in model #2 (the coefficient of arms).	
3.5 What is the correlation between rate and fico ?	

4. Test the hypothesis H₀: $\beta_1 = \beta_2 = 0$ in model #1. Fill in the following table.

4.1	Variables	Sum of	Degrees of	Mean square	F
		squares	freedom		
Full Model					Leave this space blank
Reduced	ltv, lowdoc,				Leave this
model	cashout and				space blank
	arms alone				
	Added by				
	rate and fico				
Residual					Leave this
from full					space blank
model					

Question	CIRCLE ONE or Fill in the Answer	
4.2 The null hypothesis H_0 : $\beta_1=\beta_2=0$ in model #1 is plausible.	TRUE FALSE	
4.3 The current interest rate tends to be higher in states where the credit score fico is lower.	TRUE FALSE	
4.4 The current interest rate tends to be lower in states where arms is higher.	TRUE FALSE	

PROBLEM SET #1 STATISTICS 500 FALL 2008: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone.

1. Which state has the largest Y? Which state has the smallest Y? What are the values of the predictors for these two states? What are the quartiles of Y? (10 points)

	state	rate	fico	ltv	lowdoc	cashout	arms	Y
Max Y	CA	7,68	640	81,94	46,5	56,0	71,6	37,8
Min Y	W4	8,54	613	87,54	17,3	51,1	62,3	12,4
		Lov	ver Quarti	e	Median		Upper Q	uartile
	Y		17,9		22,1	22.1 27.5		5
2 . Fit mo	odel #1 det	fined on th	e data pag	e. (4 po	pints each)			
	n you plot	,	, 0					
	oc (horizor					Ċ	A	
	ht corner o	-		1gh X)?				
	n you plot oc (horizor		, U	, tha			11	
	ht corner of					ť.	41	
-	e fit of mo	-		<u> </u>				
	alue for te				0.172			
-	, where β_1	-	• •					
	odel #1, wl							
confidence interval for β_1 ?			-2.57, 13.98					
2.5 In model #1, there can be no plausible								
	at $\beta_1 > 0$, that	· .				(
-	tes of bad	-			TF	RUE	FALS	E
	d with hig	her curren	t interest r	ates on				
those loa		moto of -	in model t	41.9	1115 TI	t's the t	in all at the in a	at' at lt
2.0 what	is the esti	mate of o	In model +	<i>†</i> 1 <i>:</i>		• ·	pical state is e	
27111	• .1	1 (* 1		1.41	deviate f	rom the mode	l by 4.2% bad	l loans.
	t is the cor					TI. At.	D: 0 770	
fitted value for Y in model #1? (Read this question carefully. <i>It asks about R, not</i> \vec{R})			1115			<i>R</i> is 0.778.	r l	
				(1700	wever, K =	0.778 ² =0.605	5/	
2.8 Suppose two states had identical predictors around that low doe was 2 units (2%) higher in			ті	DIE (FALS	F		
except that lowdoc was 2 units (2%) higher in state 1 than in state 2. Using the estimate of β_4			TRUE FALSE $2\beta_4$ is estimated to be 0.86834 [*] 2 = 1.73668, or					
in model #1, the first state is predicted to have					60034 2 – 1. th 2% more loi			
1.11% more bad loans.				1,170 more	uu vuns WIV	n 2 10 more 606	une nouns!	
	normal qu		t and a Sha	apiro-				_
Wilk test of the normality of the residuals in				TF	RUE	(FALS	e)	
model #1. These clearly indicate the residuals								
are not N	formally di	istributed.						

PROBLEM SET #1 STATISTICS 500 FALL 2008: ANSWER PAGE 2 This is an exam. Do not discuss it with anyone.

3. Fit model #2 on the data page. Question 3 refers to both model #1 and model #2, so make sure you use the correct model to answer each question. (4 points each)

Question	CIRCLE ONE or Fill in the Answer
3.1 Give the two-sided p-value for testing H ₀ : $\beta_2=0$	0,577
in model #1 (the coefficient of fico).	
3.2 Given the results of questions 2.3 and 3.1, it is	
reasonable to remove both rate and fico from	TRUE (FALSE)
model #1 and use model #2 instead.	
3.3 Give the two-sided p-value for testing H ₀ : $\beta_6=0$	0,0178
in model #1 (the coefficient of arms).	
3.4 Give the two-sided p-value for testing $H_0: \gamma_4=0$	0,128
in model #2 (the coefficient of arms).	
3.5 What is the correlation between rate and fico ?	-0,92

4. Test the hypothesis H₀: $\beta_1 = \beta_2 = 0$ in model #1. Fill in the following table. (22 points)

4.1	Variables	Sum of	Degrees of	Mean square	F
		squares	freedom		
Full Model		1171,23	6	195,205	Leave this space blank
Reduced model	ltv, lowdoc, cashout and arms alone	935.04	4	233,76	Leave this space blank
	Added by				
	rate and fico	236,19	2	118.095	6.81
Residual from full model		763.16	44	17,34	Leave this space blank

Question (4 points each)	CIRCLE ONE or Fill in the Answer
4.2 The null hypothesis H_0 : $\beta_1 = \beta_2 = 0$ in model #1 is plausible.	TRUE FALSE
4.3 The current interest rate tends to be higher in states where the credit score fico is lower.	TRUE FALSE
4.4 The current interest rate tends to be lower in states where arms is higher.	TRUE FALSE

```
Commands are in bold, comments in script, and needed pieces of
output are underlined.
> attach(subprime)
Question 1
> which.max(Y)
[1] 5
> which.min(Y)
[1] 51
> subprime[c(5,51),]
   state rate fico ltv lowdoc cashout arms
                                                 Y
5
      CA 7.68 640 81.94
                            46.5
                                    56.0 71.6 37.8
51
      WY 8.54
               613 87.54
                            17.3
                                    51.1 62.3 12.4
> summary(Y)
   Min. 1st Qu. Median
                          Mean 3rd Qu.
                                            Max.
                                   27.50
                                           37.80
  12.40
          17.90
                  22.10
                           23.02
Question 2,1 and 2,2
> plot(lowdoc,Y)
> identify(lowdoc,Y,label=state)
Questions 2, 3-2.9
> mod<-lm(Y~rate+fico+ltv+lowdoc+cashout+arms)</pre>
> summary(mod)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -150.27452 131.81108 -1.140 0.26042
               5.70574
                          4.10621
                                    1.390 0.17166
rate
fico
              -0.09873
                          0.17577 -0.562 0.57718
ltv
               1.37314
                          0.57335 2.395 0.02095 *
                          0.17702 4.905 1.32e-05 ***
lowdoc
               0.86834
               0.54665
                          0.16731 3.267 0.00211 **
cashout
arms
               0.20670
                          0.08393
                                     2.463 0.01777 *
Residual standard error: 4.165 on 44 degrees of freedom
Multiple R-Squared: 0.6055,
                               Adjusted R-squared: 0.5517
F-statistic: 11.25 on 6 and 44 DF, p-value: 1.391e-07
> lmci(mod)
                       low
                                  hiqh
(Intercept) -415.92229944 115.3732679
rate
              -2.56978052
                           13.9812691
fico
              -0.45298067
                            0.2555211
ltv
               0.21762827
                             2.5286478
lowdoc
               0.51158339
                            1.2250984
cashout
               0.20945624
                             0.8838393
arms
               0.03755305 0.3758557
Question 2,7
> cor(Y,mod$fitted.value)
[1] 0.7781248
> cor(Y,mod$fitted.value)^2
[1] 0.6054782
```

Doing the Problem Set in R

```
Question 2,8
> 0.86834*2
[1] 1.73668
Question 29
> qqnorm(mod$residual)
> shapiro.test(mod$residual)
        Shapiro-Wilk normality test
data:
       mod$residual
W = 0.9867, p-value = 0.832
The plot looks reasonably straight. The p-value, 0.832, is large, much bigger than 0.05, so the null hypothesis
that the residuals are Normal is not rejected.
Question 3
> mod2<-lm(Y ~ ltv + lowdoc + cashout + arms)</pre>
> summary(mod2)
Coefficients: Estimate Std. Error t value Pr(>|t|)
(Intercept) -146.22463 59.55846 -2.455 0.01792 *
                1.35327 0.59458 2.276 0.02755 *
ltv
                0.53532
                           0.15479 3.458 0.00118 **
lowdoc
cashout
                0.53688
                            0.18577 2.890 0.00586 **
                0.14212 0.09174 1.549 0.12821
arms
Residual standard error: 4.661 on 46 degrees of freedom
Multiple R-Squared: 0.4834, Adjusted R-squared: 0.4385
F-statistic: 10.76 on 4 and 46 DF, p-value: 3.065e-06
> cor(rate,fico)
[1] -0.9116614
Interest rates are higher, on average, in state where credit scores are lower, on average.
> plot(rate,fico)
> identify(rate,fico,label=state)
> anova(lm(Y~1),mod)
Analysis of Variance Table
  Res.Df
              RSS Df Sum of Sq F Pr(>F)
1
      50 1934.39
      44 763.16
                        1171.23 11.255 1.391e-07 ***
2
                   6
> anova(lm(Y~1),mod2)
             RSS Df Sum of Sq F
  Res.Df
                                          Pr(>F)
      50 1934.39
1
2
      46
          999.35 4
                       935.04 10.76 3.065e-06 ***
> anova(mod2,mod)
Analysis of Variance Table
  Res.Df RSS Df Sum of Sq F
                                         Pr(>F)
1
      46 999.35
      44 763.16
2
                  2
                       236.19 6.8089 0.002653 **
> 1-pf(6.81,2,44)
[1] 0.002650619
```

PROBLEM SET #2 STATISTICS 500 FALL 2008: DATA PAGE 1 Due in class Tuesday Nov 25 at noon.

This is an exam. Do not discuss it with anyone.

The data are as in Problem Set #1, except two new variables have been added. "Lower07" and "Upper07" indicate which political party, the Democrats (Dem) or Republicans (Rep) had a majority in the Lower and Upper houses of the state legislature. There is one exception, Nebraska, which no longer has parties in the state legislature – they are coded Rep to reflect their voting in most Presidential elections. The District of Columbia (Washington, DC) has been removed.

The data are from the Fed and concern subprime mortgages. You do not have to go to the Fed web page, but it is interesting: <u>http://www.newyorkfed.org/mortgagemaps/</u> The data describe subprime mortgages in the US as of August 2008. The following definitions are from the Fed spreadsheet:

-- rate is the current mortgage interest rate. For adjustable rate mortgages, the rate may reset to a higher interest rate, perhaps 6% higher.

-- fico is a credit bureau risk score. The higher the FICO score, the lower the likelihood of delinquency or default for a given loan. Also, everything else being equal, the lower the FICO score, the higher will be the cost of borrowing/interest rate.

-- **Itv** stands for the combined Loan to Value and is the ratio of the loan amount to the value of the property at origination. Some properties have multiple liens at origination because a second or "piggyback" loan was also executed. Our data capture only the information reported by the first lender. If the same lender originated and securitized the second lien, it is included in our LTV measure. Home equity lines of credit, HELOCS, are not captured in our LTV ratios.

-- lowdoc Percent Loans with Low or No Documentation refers to the percentage of owner-occupied loans for which the borrower provided little or no verification of income and assets in order to receive the mortgage.

-- cashout Cash-Out Refinances means that the borrower acquired a nonprime loan as a result of refinancing an existing loan, and in the process of refinancing, the borrower took out cash not needed to meet the underwriting requirements.

-- arms stands for adjustable rate mortgages and means that the loans have a variable rate of interest that will be reset periodically, in contrast to loans with interest rates fixed to maturity. All ARMs in this spreadsheet refer to owner-occupied mortgages.

-- Y the percent of subprime mortgages that are in one of the following categories: (i) a payment is at least 90 days past due, (ii) in the midst of foreclosure proceedings, or (iii) in REO meaning that the lender has taken possession of the property. (It is the sum of columns 25, 26 and 28 in the Fed's original spreadsheet.) In other words, Y is measures the percent of subprime loans that have gone bad.

Notice that some variables are means and others are percents and others are nominal.

PROBLEM SET #2 STATISTICS 500 FALL 2008: DATA PAGE 2

The data set is at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/

If you are using R, then it is in the **subprime2** data.frame of the latest version of the **Rst500.Rdata** workspace; you need to download the latest version. There is also a text file **subprime2.txt**, whose first line gives the variable names. *Model #1*

```
Y = \beta_0 + \beta_1 rate + \beta_2 fico + \beta_3 ltv + \beta_4 lowdoc + \beta_5 cashout + \beta_6 arms + \varepsilon
with \varepsilon iid N(0,\sigma^2)
Model #2
```

Model #2 is the same as model #1 except that an (uncentered) interaction between rate and arms is included as another variable, namely (arms x rate). In a fixed rate mortgage, it is good news to have a low rate, but in a subprime mortgage a low current rate is likely to be a teaser rate on an adjustable rate mortgage whose interest rate may soon rise by, perhaps, 6%, as in 8% now adjusts to 8+6 = 14% after the teaser rate ends. A state with high arms and low rate may have many mortgages with big increases coming soon. Would you struggle to pay your mortgage now if you knew it would soon adjust so that you could not pay it any more? Or might you walk away? *Model #3*

Model #3 is model #2 with one more variable, namely **divided**. Model #3 also includes the interaction from model #2. Let **divided** = 1 if the upper and lower houses of the state legislature are of different parties (one Democrat, the other Republican) and **divided** = 0 if the upper and lower houses are of the same party (both Democrat or both Republican).

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Special instructions:

1. Refer to states by their two-letter abbreviations.

2. It is important to use the data from **subprime2**, not from **subprime**. **subprime2** omits DC and includes additional variables.

3. One question asks about studentized residuals. This terminology is not standardized across statistical packages. These are called studentized residuals in R and jackknife residuals in your book. Do not assume that another package uses terminology in the same way.

Last name: First name	me: ID#
PROBLEM SET #2 STATISTICS	500 FALL 2008: ANSWER PAGE 1
This is an exam. Do not discuss it with any	one. Due in class Tuesday 28 Oct noon.
1. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
1.1 Which state has the largest leverage or	
hat value? Give the two letter abbreviation	
of one state.	
1.2 What is the numerical value of the	
largest leverage or hat value for the state	
you identified in the previous question?	
1.3 For model #1, what is the numerical	
cut-point for a "large hat value"? Give one	
number.	
1.4 The state with the largest leverage or	
hat value has large leverage because the	TRUE FALSE
percent of subprime mortgages gone bad is	
one of the lowest in the 50 states.	
1.5 You should always remove from the	
regression the one observation with the	TRUE FALSE
largest leverage.	
1.6 Which state has the second largest	
leverage or hat value? Give the two letter	
abbreviation of one state.	

2. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
2.1 Which state has the largest absolute	
studentized residual? Give the two letter	
abbreviation of one state.	
2.2 What is the numerical value of this	
most extreme studentized residual? Give a	
number with its sign, + or	
2.3 The state with the largest absolute	
studentized residual is largest because its	TRUE FALSE
percent of subprime mortgages gone bad is	
one of the lowest in the 50 states.	
2.4 Fit model #1 adding an indicator for the	
state you identified in 2.1 above. What is	
the t-statistic and p-value reported in the	t = p-value =
output for that indicator variable?	
2.5 For the state in 2.1 to be judged a	
statistically significant outlier at the 0.05	
level, the p-value in 2.4 would need to be	
less than or equal to what number?	
2.6 The state in 2.1 is a statistically	
significant outlier at the 0.05 level.	TRUE FALSE
Last name: First nam	e: ID#

This is an exam. Do not discuss it with anyo	
3. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
3.1 Which state has the largest absolute dffi	s?
Give the two letter abbreviation of one state.	
3.2 What is the numerical value of this mos	
extreme dffits? Give a number with its sign,	+
or	
3.3 The addition of this state to a regression	
that did not include it reduces the coefficient	of TRUE FALSE
arms by about 1.6 standard errors.	
3.4 The addition of this state to a regression	
that did not include it will shift at least one o	f TRUE FALSE
the 6 estimated slopes in model 1 by more th	an
1.6 standard errors in absolute value.	
3.5 If the Y for the state in identified in 3.1	
were increased by 1, the fitted Y for this state	TRUE FALSE
in model #1 would increase by about 0.256.	
4. Fit of model #2 to subprime2. Test the	
null hypothesis that rate and arms do not	CIRCLE ONE or Fill in the value
interact with each other in model #2.	
4.1 In this test, what is the name of the	
test statistic, the value of the test statistic,	Name: Value:
and the p-value?	
	P-value:
4.2 Is it plausible that there is no	
interaction between rate and arms in model	PLAUSIBLE NOT PLAUSIBLE
#2.	
4.3 Give the observed Y and the fitted	Observed:
value for Y for Hawaii (HI) in model #1	
and model #2.	In model 1: In model 2:

PROBLEM SET #2 STATISTICS 500 FALL 2008: ANSWER PAGE 2 This is an exam. Do not discuss it with anyone. Read the data page.

5. Fit of model #3 to subprime2.	CIRCLE ONE or Fill in the value		
5.1 What is the estimate of the coefficient of "divided"? What is its	Estimate: se:		
estimated standard error (se)?	L'Sumate Se		
5.2 The model fits lower rates of subprime			
mortgages gone bad in states where control	TRUE FALSE		
of the legislature is divided.			

PROBLEM SET #2 STATISTICS 500 FA	1 / 1
1. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
1.1 Which state has the largest leverage or	
hat value? Give the two letter abbreviation	TX = Texas
of one state. 1 point	
1.2 What is the numerical value of the	
largest leverage or hat value for the state	0.467
you identified in the previous question?	
1.3 For model #1, what is the numerical	
cut-point for a "large hat value"? Give one	$0.28 = 2 \times (1+6)/50$
number.	- //
1.4 The state with the largest leverage or	
hat value has large leverage because the	TRUE (FALSE)
percent of subprime mortgages gone bad is	
one of the lowest in the 50 states.	
1.5 You should always remove from the	
regression the one observation with the	TRUE (FALSE)
largest leverage.	
1.6 Which state has the second largest	
leverage or hat value? Give the two letter	HI = Hawaii
abbreviation of one state. 1 point	

PROBLEM SET #2 STATISTICS 500 FALL 2008 5 points each, except as noted.

2. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
2.1 Which state has the largest absolute	
studentized residual? Give the two letter	CA = California
abbreviation of one state. 1 point	v
2.2 What is the numerical value of this	
most extreme studentized residual? Give a	2.957
number with its sign, + or	
2.3 The state with the largest absolute	
studentized residual is largest because its	TRUE (FALSE)
percent of subprime mortgages gone bad is	
one of the lowest in the 50 states.	
2.4 Fit model #1 adding an indicator for the	
state you identified in 2.1 above. What is	t = 2,957 p-value = 0,005081
the t-statistic and p-value reported in the	Compare 2.2 and 2.4!
output for that indicator variable?	/
2.5 For the state in 2.1 to be judged a	
statistically significant outlier at the 0.05	0.001 = 0.05/50
level, the p-value in 2.4 would need to be	
less than or equal to what number?	
2.6 The state in 2.1 is a statistically	
significant outlier at the 0.05 level.	TRUE FALSE

This is an exam. Do not discuss it with anyo	ne. Due in class Tuesday 28 Oct noon.
3. In the fit of model #1 to subprime2	CIRCLE ONE or Fill in the value
3.1 Which state has the largest absolute dffi	ts? HI = Hawaii
Give the two letter abbreviation of one state.	
1 point	
3.2 What is the numerical value of this mos	t
extreme dffits? Give a number with its sign.	-1.612 Wow!
3.3 The addition of this state to a regression	
that did not include it reduces the coefficient	of TRUE (FALSE)
arms by about 1.6 standard errors.	No, this is sitty.
3.4 The addition of this state to a regression	
that did not include it will shift at least one o	f TRUE (FALSE)
the 6 estimated slopes in model 1 by more th	an No, the absolute diffits is an upper bound, not a
1.6 standard errors in absolute value.	lower bound, on the absolute dibetas.
3.5 If the Y for the state in identified in 3.1	
were increased by 1, the fitted Y for this state	e TRUE (FALSE)
in model #1 would increase by about 0.256.	Look at the hatvalue for H1, 0.456, not 0.256.
4. Fit of model #2 to subprime2. Test the	
null hypothesis that rate and arms do not	CIRCLE ONE or Fill in the value
interact with each other in model #2.	
4.1 In this test, what is the name of the	
test statistic, the value of the test statistic,	Name: t-statistic Value: -2,21
and the p-value?	
	P-value: 0.033
4.2 Is it plausible that there is no	
interaction between rate and arms in model	PLAUSIBLE (NOT PLAUSIBLE)
#2.	
4.3 Give the observed Y and the fitted	Observed: <i>16,6%</i>
value for Y for Hawaii (HI) in model #1	In model 1: 21.8% In model 2: 18.2%
and model #2.	Whatever else, the interaction helped with HI.
5 Et a f d a l #2 4a b	CIDCLE ONE on Eilling the state
5. Fit of model #3 to subprime2.	CIRCLE ONE or Fill in the value

PROBLEM SET #2 STATISTICS 500 FALL 2008: ANSWER PAGE 2 s is an exam. Do not discuss it with anyone. Due in class Tuesday 28 Oct noon.

5. Fit of model #3 to subprime2.	CIRCLE ONE or Fill in the value
5.1 What is the estimate of the coefficient of "divided"? What is its estimated standard error (se)?	Estimate: 2.99 se: 1.32
5.2 The model fits lower rates of subprime mortgages gone bad in states where control of the legislature is divided.	TRUE FALSE No, from 5.1, it is about 3% higher — obviously, this may not be the cause.

Statistics 500 Bulk Pack - 181 -

```
DOING THE PROBLEM SET IN R
```

```
(Fall 2008, Problem Set 2)
Question #1
> mod<-lm(Y~rate+fico+ltv+lowdoc+cashout+arms)</pre>
> dim(subprime2)
[1] 50 15
> mean(hatvalues(mod))
[1] 0.14
> (1+6)/50
[1] 0.14
> 2*.14
[1] 0.28
> subprime2[hatvalues(mod)>=.28,1:7]
   state rate fico ltv lowdoc cashout arms
12
     HI 7.45 646 80.37
                           44.9
                                   62.0 46.6
      TX 8.88 606 84.44
44
                           29.8
                                  41.7 45.3
      VT 8.65 612 80.29
                                   67.6 59.7
47
                           30.3
> hatvalues(mod)[hatvalues(mod)>=.28]
                43
                           46
       11
0.4561207 0.4674280 0.2938781
Question #2
> which.max(abs(rstudent(mod)))
5
> subprime2[5,1:8]
  state rate fico
                  ltv lowdoc cashout arms
                                               Y
5
     CA 7.68 640 81.94 46.5
                               56 71.6 37.8
> rstudent(mod)[5]
       5
2.956946
> ca<-rep(0,50)</pre>
> ca[5]<-1
> summary(lm(Y~rate+fico+ltv+lowdoc+cashout+arms+ca))
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -157.55396 123.55951 -1.275 0.209273
rate
              3.09684
                          3.81461
                                  0.812 0.421463
                         0.16338 -1.314 0.196087
fico
              -0.21463
                                    3.553 0.000958 ***
ltv
               2.43404
                         0.68514
lowdoc
                          0.17504
                                   5.666 1.20e-06 ***
               0.99174
cashout
              0.77536
                         0.17560 4.415 6.93e-05 ***
                       0.08808 1.174 0.247192
arms
              0.10337
              12.54794
                          4.24355 2.957 0.005081 **
са
> 0.05/50
[1] 0.001
Question #3
> boxplot(dffits(mod))
> which.max(dffits(mod))
5
> which.min(dffits(mod))
11
> subprime2[c(5,11),1:8]
   state rate fico ltv lowdoc cashout arms
                                                Υ
5
      CA 7.68 640 81.94
                                56 71.6 37.8
                         46.5
      HI 7.45 646 80.37
                          44.9
                                     62 46.6 16.6
12
> dffits(mod)[11]
```

```
11
-1.612354
> round(dfbetas(mod)[11,],2)
(Intercept) rate fico ltv lowdoc cashout
                                                          arms
                                 -0.02
      0.82 -0.35 -0.83 -0.16
                                            -0.34
                                                         0.95
> max(abs(dffits(mod)))
[1] 1.612354
> max(abs(dfbetas(mod)))
[1] 0.9491895
Question #4
> interact<-rate*arms</pre>
> summary(lm(Y~rate+fico+ltv+lowdoc+cashout+arms+interact))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -463.25688 176.28667 -2.628 0.01195 *
                     10.18440 2.514 0.01585 *
rate
            25.60511
                     0.17304 -0.094 0.92524
fico
            -0.01633
             2.29927
ltv
                     0.70883 3.244 0.00232 **
            0.98048 0.18204 5.386 3.02e-06 ***
lowdoc
            0.81987 0.19058 4.302 9.89e-05 ***
cashout
            2.83047 1.22124 2.318 0.02541 *
arms
interact -0.31779 0.14376 -2.211 0.03257 *
_ _ _
Residual standard error: 3.935 on 42 degrees of freedom
Multiple R-Squared: 0.6585, Adjusted R-squared: 0.6016
F-statistic: 11.57 on 7 and 42 DF, p-value: 4.396e-08
> subprime2[11,1:8]
  state rate fico ltv lowdoc cashout arms
                                            Υ
     HI 7.45 646 80.37 44.9 62 46.6 16.6
12
> lm(Y~rate+fico+ltv+lowdoc+cashout+arms)$fitted.values[11]
     11
21.81003
> lm(Y~rate+fico+ltv+lowdoc+cashout+arms+interactc)$fitted.values[11]
     11
18.16952
Question #5
> summary(lm(Y~rate+fico+ltv+lowdoc+cashout+arms+interact+divided))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -507.84012 169.29768 -3.000 0.00458 **
            28.58942 9.80312 2.916 0.00572 **
rate
             0.02464
fico
                      0.16604 0.148 0.88274
             2.22538 0.67692 3.288 0.00208 **
ltv
            0.95104 0.17413 5.462 2.51e-06 ***
lowdoc
cashout
            0.81514 0.18181 4.484 5.80e-05 ***
             3.21633 1.17724 2.732 0.00924 **
arms
           -0.36180 0.13849 -2.612 0.01251 *
interact
divided
            2.98845 1.31563 2.271 0.02843 *
```

PROBLEM SET #3 STATISTICS 500 FALL 2008: DATA PAGE 1 Due in my office, 473 JMHH, Wednesday December 10, 2008 at 11:00am. This is an exam. Do not discuss it with anyone.

The National Supported Work (NSW) project was a randomized experiment intended to provide job skills and experience to the long-term unemployed. The treatment consisted of gradual, subsidized exposure to regular work. The data are in the data.frame nsw in Rst500.Rdata – you need to get the latest version. There is a text file, nsw.txt. Both are at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/

A coin was flipped to assign each person to treatment or control. A portion of the data is below. (All are men. Some sampling was used to create a balanced design to simplify your analysis.)

```
> nsw[1:3,c(1,3,8:12),]
  treat edu re74 re75 re78 change
                                               group
7
      1 12 0 0 0.0 0.0 Treated:Grade11+
              0
                   0 590.8 590.8 Treated:Grade11+
55
      1 11
      1 12 0 0 4843.2 4843.2 Treated:Grade11+
50
> dim(nsw)
[1] 348 12
> table(group)
(Notice the group numbers, i=1,2,3,4,)
Group
                      i=2
                                       i=3
   i=1
                                                      i = 4
Control:Grade11+ Control:Grade10- Treated:Grade11+ Treated:Grade10-
             87
                              87
                                               87
                                                                87
```

treat=1 for treated, =0 for control. **edu** is highest grade of education. The variable change is re78-(re75+re74)/2, where reYY is earnings in \$\$ in year YY. For the men in nsw, re78 is posttreatment earnings and both re74 and re75 are pretreatment earnings. The variable "group" has four levels, based on treatment-vs-control and highest grade is 11^{th} grade or higher vs 10^{th} grade or lower. There are 87 men in each group. Obviously, the creators of the nsw treatment would have been happy to see large positive values of "change" among treated men.

You can read about the NSW in the paper by Couch (1992). The data are adapted from work by Dehjia and Wahba (1999). There is no need to go to these articles unless you are curious – they will not help in doing the problem set.

You are to do a one-way anova of change by group, so there are four groups.

Model #1 is change_{ij} = $\mu + \tau_i + \varepsilon_{ij}$ for i=1,2,3,4, j=1,2,...,87, with ε_{ij} iid N(0, σ^2).

Concerning question 3: Create 3 orthogonal contrasts to represent a comparison of treatment and control (treatment), a comparison of grade 10 or less vs grade 11 or more (grade), and their interaction (interaction). Use integer weights.

Couch, K.A.: New evidence on the long-term effects of employment training programs. *J Labor Econ* 10, 380-388. (1992)

Dehejia, R.H., Wahba, W.: Causal effects in nonexperimental studies: reevaluating the evaluation of training programs causal effects in nonexperimental studies. *J Am Statist Assoc* 94, 1053-1062 (1999)

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam.

Special instructions:

1. Make a photocopy of your answer page.

2. You may turn in the exam early. You may leave it in my mail box in the statistics department, 4th floor of JMHH, in an envelop addressed to me.

3. One question asks about **studentized residuals**. This terminology is not standardized across statistical packages. These are called studentized residuals in R and jackknife residuals in your book. Do not assume that another package uses terminology in the same way.

Last name:	First name:	ID#
------------	-------------	-----

PROBLEM SET #3 STATISTICS 500 FALL 2008: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. Due Wednesday 10-Dec-08 at 11:00am. **1.** Do a one-way analysis of variance of y=change by the four groups defined by "group" in the nsw data. Use this to answer the following questions.

Question	CIRCLE ONE or Fill in Values
1.1 Test H ₀ : $\tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ under model	
#1. What is the name of the test statistic?	Name: Value:
What is the numerical value of the test	Vanie Vanue
statistic? What is the p-value ? Is the null	p-value: H_0 is:
hypothesis plausible ?	PAUSIBLE NOT PLAUSIBLE
	TRUSIBLE NOTTLAUSIBLE
1.2 What is the mean change in each of the	T C 11. T C 10
four groups? Here Tr is treated, Co is	TrGr11+ TrGr10
control, Gr11+ is grade 11 or more, Gr10-	
is grade 10 or less.	CoGr11+CoGr10
1.3 What is the unbiased estimate of σ^2 ?	2
What is the corresponding estimate of σ ?	σ^2 : σ :
1.4 If ε_{ii} were not Normal, then this could	
invalidate the test you did in 1.1.	TRUE FALSE
2. Use Tukey's method to compare every pa	ir of two groups. Use Tukey's method in
two-sided comparisons that control the exper	
Identify groups by number,	
i=1 Control:Grade11+	
i=2 Control:Grade10-	CIRCLE ONE or Fill in Values
i=3 Treated:Grade11+	
i=4 Treated:Grade10-	
2.1 With four groups, there are how many	11
pairwise tests done by Tukey's method?	How many:
2.2 List all pairs (a,b) of null hypotheses,	
H ₀ : $\tau_a = \tau_b$ which are rejected by Tukey's	
method. List as (a,b) where a and b are in	
{1,2,3,4}. If none, write "none".	
2.3 It is logically possible that all of the	
null hypotheses H ₀ : $\tau_a = \tau_b$ you counted in	TRUE FALSE
2.1 are true except for the rejected	
hypotheses in 2.2.	
2.4 If exactly one hypothesis H ₀ : $\tau_a = \tau_b$	
were true and all the rest were false, then	
under model #1 the chance that Tukey's	TRUE FALSE
method rejects the one true hypothesis is at	
most 0.05.	
11000 01001	

Last nam	ne:	First name:	ID#
]	PROBLEM	M SET #3 STATISTICS 500 FA	ALL 2008: ANSWER PAGE 2

3. Create 3 orthogonal contrasts; see the data page.

	i=1 Cont			ontrol		Treated	i=4 Treated
214	Grade1	1+	Grad	e10-	Gi	rade11+	Grade10-
3.1 treatment							
3.2 grade							
8- ····							
3.3 interaction	l						
3.4 Demonstrat	te by a calculat	tion th	at the con	trast for			
grade is orthog	onal to the con	trast f	or interac	tion. Put			
the calculation	in the space at	the rig	ght.				
3.5 If the inter	action contrast	amon	g the true	•			
parameter valu	es, τ_i , were not	t zero,	a reasona	able			
interpretation is						TRUE	FALSE
change in earni				on			
whether a man	has completed	l 11 th g	grade.				
4. Use the con			č	nova table	e.		
Source of	Sum of	U	ees of	Mean sq	uare	F-statistic	p-value
variation	squares	freed	om				
Between							
groups							
Treatment							
contrast							
Grade							
contrast							
Interaction							
Contrast							
Residual						Leave blan	k Leave blank
within groups							
5. For model #		nta to a	inswer the	e followin	ig que		
	Question					CIRCLE ON	
5.1 There are the			0		TRU	E I	FALSE
leverage (large							
5.2 There is a statistically significant							
outlier in the T		0	-		TRU	E I	FALSE
	ge in earnings was positive.						
5.3 Except perhaps for at most one outlier,							
the studentized residuals are plausibly				TRU	IE I	FALSE	
Normal.							
	5.4 Model #1 should be replaced by a					-	
similar model for log ₂ (change)				TRU	IE I	FALSE	

PROBLEM SET #3 STATISTICS 500 FALL 2008: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. Due Wednesday 10-Dec-08 at 11:00am. **1.** Do a one-way analysis of variance of y=change by the four groups defined by "group" in the nsw data. Use this to answer the following questions.

QuestionCIRCLE ONE or Fill in Values1.1 Test $H_0: \tau_1 = \tau_2 = \tau_3 = \tau_4 = 0$ under modelName: <i>F-statistic</i> Value: 3.93#1. What is the name of the test statistic?P-value: 0.0088H_0 is:What is the numerical value of the testPAUSIBLENOT PLAUSIBLEhypothesis plausible?PAUSIBLENOT PLAUSIBLE1.2 What is the mean change in each of theTrGr11+ \$6122TrGr10- \$3385four groups? Here Tr is treated, Co isTrGr11+ \$6122TrGr10- \$3385control, Gr11+ is grade 11 or more, Gr10-CoGr11+ \$2387CoGr10-\$31581.3 What is the unbiased estimate of σ^2 ?State of $\sigma^2: 5.88 \times 10^7$ $\sigma: 7670 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
#1. What is the name of the test statistic? What is the numerical value of the test statistic? What is the p-value? Is the null hypothesis plausible?p-value? Is the null PAUSIBLEHo is:1.2 What is the mean change in each of the four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ <i>\$6122</i> TrGr10- <i>\$3385</i> 1.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ^2 ? What is the corresponding estimate of σ^2 ? C. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
What is the numerical value of the test statistic? What is the p-value ? Is the null hypothesis plausible ?PAUSIBLENOT PLAUSIBLE1.2 What is the mean change in each of the four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ <i>\$6122</i> TrGr10- <i>\$3385</i> 1.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ^2 ? What is the corresponding estimate of σ ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : 7670 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Gradel1+
statistic?What is the p-value ? Is the null hypothesis plausible ?PAUSIBLENOT PLAUSIBLE1.2 What is the mean change in each of the four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ <i>\$6122</i> TrGr10- <i>\$3385</i> 1.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ^2 ? What is the corresponding estimate of σ^2 ? C. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.TRUEFALSEIdentify groups by number, i=1 Control:Grade11+Identify groups by number, i=1 Control:Grade11+Identify groups by number, i=1 Control:Grade11+Identify groups by number, i=1 Control:Grade11+
hypothesis plausible?TROUMER1.2 What is the mean change in each of the four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ $\pounds 6122$ TrGr10- $\pounds 3385$ 1.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ^2 ? What is the corresponding estimate of σ^2 ? CoGr11+ $\pounds 2387$ CoGr10- $\pounds 33758$ 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
1.2 What is the mean change in each of the four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ \$6122TrGr10- \$33851.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ ?CoGr11+\$2387CoGr10-\$31581.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Gradel1+
four groups? Here Tr is treated, Co is control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.TrGr11+ \$6122TrGr10- \$33851.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ ?CoGr11+ \$2387CoGr10- \$37581.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
control, Gr11+ is grade 11 or more, Gr10- is grade 10 or less.CoGr10- $\$3758$ 1.3 What is the unbiased estimate of σ^2 ? What is the corresponding estimate of σ ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : \$7670$ 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
is grade 10 or less. $CoGr11 + 2387 $CoGr10 - 3758 1.3 What is the unbiased estimate of σ^2 ?What is the corresponding estimate of σ ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : 7670 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
1.3 What is the unbiased estimate of σ^2 ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : 7670 What is the corresponding estimate of σ ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : 7670 1.4 If ϵ_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
What is the corresponding estimate of σ ? $\sigma^2 : 5.88 \times 10^7$ $\sigma : 7670 1.4 If ε_{ij} were not Normal, then this could invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
1.4 If ε _{ij} were not Normal, then this could invalidate the test you did in 1.1. TRUE FALSE 2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05. Identify groups by number, i=1 Control:Grade11+
invalidate the test you did in 1.1.TRUEFALSE2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Gradel1+
2. Use Tukey's method to compare every pair of two groups. Use Tukey's method in two-sided comparisons that control the experiment-wise error rate at 0.05. Identify groups by number, i=1 Control:Grade11+
two-sided comparisons that control the experiment-wise error rate at 0.05.Identify groups by number, i=1 Control:Grade11+
Identify groups by number, i=1 Control:Grade11+
i=1 Control:Grade11+
i=2 Control:Grade10- CIRCLE ONE or Fill in Values
i=3 Treated:Grade11+ i=4 Treated:Grade10-
2.1 With four groups, there are how many
pairwise tests done by Tukey's method? How many: 6
pun wise tests done by rukey's method.
2.2 List all pairs (a,b) of null hypotheses,
H ₀ : $\tau_a = \tau_b$ which are rejected by Tukey's
method. List as (a,b) where a and b are in (1,3)
$\{1,2,3,4\}$ with a b. If none, write "none".
2.3 It is <u>logically possible</u> that all of the
null hypotheses H_0 : $\tau_a = \tau_b$ you counted in TRUE (FALSE)
2.1 are true except for the rejected $f_1 \tau_1$ does not equal τ_3 then τ_2 cannot equal both τ_1 and
hypotheses in 2.2. τ_3 because τ_2 would have to equal two different things.
2.4 If exactly one hypothesis H_0 : $\tau_a = \tau_b$
were true and all the rest were false, then
under model #1 the chance that Tukey's (TRUE) FALSE
method rejects the one true hypothesis is <u>at</u>
<u>most</u> 0.05.

Last name:	First name:	ID#
PR	OBLEM SET #3 STATISTICS 500 FALL 2008	B: ANSWER PAGE 2

3. Create 3 orthogonal contrasts; **see the data page**.

3. Create 3 ort	hogonal contra	asts; see the (data page.			
	i=1 Cont		Control		Treated	i=4 Treated
	Grade1	1+ Gr	ade10-	G	rade11+	Grade10-
3.1 treatment	-1		-1		1	1
3.2 grade	1		-1		1	-1
3.3 interaction	l -1		1		1	-1
3.4 Demonstra grade is orthog	•				-1)+(-1x1)+(1x1 1 + -1 + 1 + 1	1)+(-1x-1)
the calculation				= 0		
3.5 If the inter	action contrast	among the t	rue			
parameter values, τ_i , were not zero, a reasonabl interpretation is that the effect of the treatment					TRUE	FALSE
change in earnings is different depending upon						
whether a man						
4. Use the con	trasts to fill in	the following	g anova tabl	e.		
Source of	Sum of	Degrees of	Mean so	Juare	F-statistic	p-value
variation	squares	freedom				
Between groups	6.93 x 10 ⁸	3	2.31 x	10 ⁸	3, 93	0.0088
Treatment	3.4 x 10 ⁸	1	3.4 x	10 ⁸	5,81	0.016
contrast	7			7		
Grade	8.4 x 10 ⁷	1	8.4 x	10'	1,43	0,232
contrast	2			0		
Interaction	2.7 x 10 ⁸	1	2.7 x	108	4,56	0,033
Contrast				_		
Residual	2.02 x 10 ¹⁰	344	5.88 x	10	Leave blank	Leave blank
within groups						
5. For model #	^{‡1} in the nsw d	ata to answe	r the followi	ng que	estions about 1	model #1.
	Question			CIRCLE ONE		
There are three	observations	with high		TRUE (FALSE)		
leverage (large hatvalues) by our standard.			.	All	the leverages are	equal.

leverage (large hatvalues) by our standard.	All the leverages are equal.
There is a statistically significant outlier in the Treated:Grade11+ group whose change in earnings was positive.	TRUE FALSE Wow! rudemt for 43 is 7.58!
Except perhaps for at most one outlier, the studentized residuals are plausibly Normal.	It's not just one outlier! Do a q-q-plot. TRUE FALSE
Model #1 should be replaced by a similar model for log ₂ (change)	Many changes are negative. Can't take log(x) for x<0 TRUE FALSE

Doing the Problem Set in R > summary(aov(change~group)) Df Sum Sq Mean Sq F value Pr(>F) qroup 3 6.93e+08 2.31e+08 3.93 0.0088 ** Residuals 344 2.02e+10 5.88e+07 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > tapply(change,group,mean) Control:Grade11+ Control:Grade10- Treated:Grade11+ Treated:Grade10-3158 2387 6122 3385 > TukeyHSD(aov(change~group)) Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = change ~ group) Śaroup diff lwr upr Control:Grade10--Control:Grade11+ 771.5 -2228.98 3771.9 Treated:Grade11+-Control:Grade11+ 3735.3 734.88 6735.8 Treated:Grade10--Control:Grade11+ 997.8 -2002.63 3998.3 Treated:Grade11+-Control:Grade10- 2963.9 -36.59 5964.3 Treated:Grade10--Control:Grade10- 226.3 -2774.11 3226.8 Treated:Grade10--Treated:Grade11+ -2737.5 -5737.96 262.9 > Treatment<-c(-1,-1,1,1)</pre> > Grade<-c(1,-1,1,-1)</pre> > Interact<-Treatment*Grade > contrasts(nsw\$group)<-cbind(Treatment,Grade,Interact)</pre> > attach(nsw) > contrasts(group) Treatment Grade Interact Control:Grade11+ -1 1 -1 Control:Grade10--1 -1 1 1 Treated:Grade11+ 1 1 -1 Treated:Grade10-1 -1 > summary(aov(change~group)) Df Sum Sq Mean Sq F value Pr(>F) 3 6.9324e+08 2.3108e+08 3.9327 0.008817 ** group 344 2.0213e+10 5.8759e+07 Residuals Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 > h<-model.matrix(change~group)</pre> > dim(h)[1] 348 4 > tr<-h[,2]</pre> > grd<-h[,3]</pre> > int<-h[,4]</pre> > anova(lm(change~tr+grd+int)) Analysis of Variance Table Df Sum Sq Mean Sq F value Pr(>F) 1 3.4136e+08 3.4136e+08 5.8096 0.01646 * tr 1 8.4071e+07 8.4071e+07 1.4308 0.23246 grd 1 2.6781e+08 2.6781e+08 4.5577 0.03348 * int Residuals 344 2.0213e+10 5.8759e+07

```
> summary(lm(change~tr+grd+int))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                        <2e-16 ***
(Intercept) 3763.0 410.9 9.158
                        410.9
              990.4
                               2.410
                                        0.0165 *
tr
grd
              491.5
                       410.9
                                1.196
                                        0.2325
int
              877.2
                        410.9
                                2.135
                                        0.0335 *
___
Residual standard error: 7665 on 344 degrees of freedom
Multiple R-Squared: 0.03316, Adjusted R-squared: 0.02473
F-statistic: 3.933 on 3 and 344 DF, p-value: 0.008817
> which.max(abs(rstudent(lm(change~tr+grd+int))))
43
> nsw[43,]
   treat age edu black hisp married nodegree re74 re75 re78 change
group
132
       1 28 11
                     1 0
                              0
                                     1 0 1284 60308 59666
Treated:Grade11+
> rstudent(lm(change~tr+grd+int))[43]
 43
7.58
> dim(nsw)
[1] 348 12
> out<-rep(0,348)</pre>
> out[43]<-1
> summary(lm(change~tr+grd+int+out))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                         381.4 9.458 < 2e-16 ***
             3607.3
(Intercept)
                         381.4
                                       0.0293 *
tr
              834.8
                                2.189
              335.9
                         381.4 0.881
                                       0.3791
grd
                                1.892
int
              721.6
                        381.4
                                        0.0593 .
            54166.3
                        7145.7 7.580 3.25e-13 ***
out
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7105 on 343 degrees of freedom
Multiple R-Squared: 0.1719, Adjusted R-squared: 0.1622
F-statistic: 17.8 on 4 and 343 DF, p-value: 2.731e-13
> 0.05/348
[1] 0.0001437
> qqnorm(rstudent(lm(change~group)))
> shapiro.test(rstudent(lm(change~group)))
       Shapiro-Wilk normality test
data: rstudent(lm(change ~ group))
W = 0.8837, p-value = 1.401e-15
```

PROBLEM SET #1 STATISTICS 500 FALL 2010: DATA PAGE 1 Due in class Tuesday 26 October 2010 at noon. This is an exam. Do not discuss it with anyone.

The data are from a paper: Redding and Strum (2008) The costs of remoteness: evidence from German division and reunification. *American Economic Review*, 98, 1766-1797. You can obtain the paper from the library web-page, but there is no need to do that to do the problem set.

The paper discusses the division of Germany into East and West following the Second World War. Beginning in 1949, economic activity that crossed the East/West divide was suppressed. So a West German city that was close to the East German border was geographically limited in commerce. Redding and Strum were interested in whether such cities had lower population growth than cities far from the East/West boarder.

The data are in the data.frame **gborder**. The outcome is $\mathbf{Y} = g3988$, which is the percent growth in population from 1939 to 1988. (Germany reunified in 1990.) The variable dist is a measure of proximity to the East German border. Here, $\mathbf{D} =$ dist would be 1 if a city were on the border, it is 0 for cities 75 or more kilometers from the border, and in between it is proportional to the distance from the border, so dist=1/2 for a city 75/2 = 37.5 kilometers from the border. Redding and Strum would predict slow population growth for higher values of dist. The variables $\mathbf{Ru} =$ rubble, $\mathbf{F} =$ flats and $\mathbf{Re} =$ refugees describe disruption from World War II. Here, rubble is cubic meters of rubble per capita, flats is the number of destroyed dwellings as a percent of the 1939 stock of dwellings, and refugees is the percent of the 1961 city population that were refugees from eastern Germany. Finally, $\mathbf{G} = g1939$ is the percent growth in the population of the city from 1919 to 1939. Also in gborder are the populations and distances used to compute the quantities growth rates and dist variables; for instance, dist_gg_border is the distance in kilometers to the East German border.

> dim(gborder)
[1] 122 11

1
g1939
11
22
26
41
20
91.

If you are using R, the data are available on my webpage, <u>http://www-</u>

stat.wharton.upenn.edu/~rosenbap/index.html in the object gborder. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather that using the file already on your computer. In Firefox, this would be Tools -> Clear Private Data and check cache. If you cannot find the gborder object when you download the new R workspace, you probably have not downloaded the new file and are still working with the old one.

PROBLEM SET #1 STATISTICS 500 FALL 2010: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

If you are not using R, the data are available in a .txt file (notepad) at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ as benzene.txt, or http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ 2008/stat500/gborder.txt The list of files here is case sensitive, upper case separate from lower case, so benzene.txt is with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files.

 $Y = \lambda_0 + \lambda_1 D + \lambda_2 G + \eta$ or $g3988 = \lambda_0 + \lambda_1 dist + \lambda_2 g1939 + \eta$ with η iid N(0, κ^2)

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Name:	ID#				
PROBLEM SET #1 STATISTICS 5	00 FALL 2010: ANSWER PAGE 1				
This is an exam. Do not discuss it with anyone.					
Read the data page and fit model #1.					
Use model #1 to answer the following	Fill in or CIRCLE the correct answer				
parts of question 1 and for this question					
assume the model is true.					
1.1 Give the least squares estimate of β_1	Standard error:				
the coefficient of $D = dist$ and also the					
estimated standard error of the estimate of	Estimate:				
β_1					
1.2 Give the numerical value of the					
estimate of σ	Estimate:				
1.3 Do a two-sided test of the null					
hypothesis H_0 : $\beta_1 = 0$. What is the name of	Name: Value:				
the test? What is the value of the test	Circle one				
statistic? What is the p-value? Is the null	p-value: PLAUSIBLE NOT				
hypothesis plausible?					
1.4 Test the null hypothesis H_0 : $\beta_1 = \beta_2 =$					
$\beta_3 = \beta_4 = 0$. What is the name of the test?	Name: Value:				
What is the value of the test statistic?	Circle one				
What is the p-value? Is the null hypothesis	p-value: PLAUSIBLE NOT				
plausible?					
1.5 What is the regression sum of squares?					
What is the residual sum of squares? What	Regression SS:				
percent of the total sum of squares (around					
the mean) has been fitted by the	Residual SS: Percent:%				
regression?					
1.6 Consider two cities which are the same					
in terms of Ru = rubble, F=flats and					
Re=refugees. Suppose that one (near) was	Difference, near-minus-far:				
at the East/West border and the other (far)					
was more than 75 kilometers away. For					
these two cities, model 1 predicts a certain					
difference, near-minus-far, in their growth					
(in Y=g3988). What is that predicted					
difference? (Give a number.)					
1.7 Give the 95% confidence interval for	95% CI ,				
the quantity you estimated in question 1.6.	Circle one				
Is it plausible that the difference is zero?	PLAUSIBLE NOT				
1.0 Which situate allocate the Fact Ca					
1.8 Which city is closest the East German					
border? What is the distance in kilometers	City name: kilometers:				
from that city to the border? What is the	Actual V: fitted V.				
actual growth and the fitted growth for that $city (\mathbf{V} \text{ and fitted } \mathbf{V})^2$	Actual Y: fitted Y:				
city (Y and fitted Y)?					

Name:	ID#			
PROBLEM SET #1 STATISTICS 5	00 FALL 2010: ANSWER PAGE 2			
This is an exam. Do not discuss it with anyone.				
Use model 1 to answer the parts of				
question 2.	Fill in or CIRCLE the correct answer			
2.1 Boxplot the residuals (do not turn in				
the plot.) Which city has the largest	City name:			
absolute residual? What is the numerical				
value of that residual and what is its Y?	Residual: Y:			
2.2 Do a normal quantile plot of the				
residuals (do not turn in the plot) and a	P-value:			
Shapiro-Wilk test. What is the p-value	Circle one			
from the Shapiro-Wilk test? Is it plausible	PLAUSIBLE NOT			
that the residuals are Normal?				
Use model 2 to answer the parts of				
question 3. For the purpose of question	Fill in or CIRCLE the correct answer			
3, assume model 2 is true.				
3.1 Model 2 provides strong evidence that				
cities whose populations grew substantially				
from 1919 to 1939 continued on to grow	TRUE FALSE			
substantially more than other cities from				
1939 to 1988.				
3.2 In model 2, cities with more rubble				
from the War typically grew more than	TRUE FALSE			
cities with less rubble, among cities similar				
in terms of other variables in model 2.				
3.3 In model 2, test the hypothesis H_0 :				
$\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru,				
F and Re are zero, so these war related	Name: Value:			
variables have zero coefficients. What is				
the name of the test statistic? What is the	Degrees of freedom:			
numerical value of the test statistic? Give				
the degrees of freedom for the test. What is	p-value:			
the p-value. Is the null hypothesis	Circle one			
plausible?	PLAUSIBLE NOT			
4 Et model 2 commine it to be trained				
4. Fit model 3, assuming it to be true and	95% CI ,			
give a 95% confidence interval for the	Circle one			
coefficient λ_1 of D=dist. Is it plausible that	PLAUSIBLE NOT			
this coefficient is zero?				

ANSWERS
PROBLEM SET #1 STATISTICS 500 FALL 2010: ANSWER PAGE 1
This is an exam. Do not discuss it with anyone.

This is an exam. Do no	t discuss it with anyone.
Read the data page and fit model #1. Use model #1 to answer the following parts of question 1 and for this question assume the model is true.	Fill in or CIRCLE the correct answer 7 points each, except 3.3 for 9 points
1.1 Give the least squares estimate of β_1 the coefficient of D = dist and also the estimated standard error of the estimate of β_1	Standard error:Estimate: -51.220.5
1.2 Give the numerical value of the estimate of σ	Estimate: 48.3
1.3 Do a two-sided test of the null hypothesis H ₀ : $\beta_1 = 0$. What is the name of the test? What is the value of the test statistic? What is the p-value? Is the null hypothesis plausible?	Name: <i>t-test</i> Value: -2.49 Circle one p-value: 0.014 PLAUSIBLE NOT
1.4 Test the null hypothesis H_0 : $\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$. What is the name of the test? What is the value of the test statistic? What is the p-value? Is the null hypothesis plausible?	Name: <i>F-test</i> Value: 8.5 Circle one p-value: 4.6x10 ⁻⁶ PLAUSIBLE NOT
1.5 What is the regression sum of squares? What is the residual sum of squares? What percent of the total sum of squares (around the mean) has been fitted by the regression?	Regression SS: 79,369 Residual SS: 272,827 Percent: 22.5% The percent is R ²
1.6 Consider two cities which are the same in terms of Ru = rubble, F=flats and Re=refugees. Suppose that one (near) was at the East/West border and the other (far) was more than 75 kilometers away. For these two cities, model 1 predicts a certain difference, near-minus-far, in their growth (in Y=g3988). What is that predicted difference? (Give a number.)	Difference, near-minus-far: -51.2
1.7 Give the 95% confidence interval for the quantity you estimated in question 1.6. Is it plausible that the difference is zero?	95% CI [-91.85 , -10.55] Circle one PLAUSIBLE NOT
1.8 Which city is closest the East German border? What is the distance in kilometers from that city to the border? What is the actual growth and the fitted growth for that city (Y and fitted Y)?	City name: <i>Luebeck</i> kilometers: 5.4 Actual Y: 35.9% fitted Y: 65.75%

ANSWERS
PROBLEM SET #1 STATISTICS 500 FALL 2010: ANSWER PAGE 2
This is an exam. Do not discuss it with anyone.

Use model 1 to answer the parts of question 2.Fill in or CIRCLE the correct answer2.1 Boxplot the residuals (do not turn in the plot.) Which city has the largest absolute residual? What is the numerical value of that residual and what is its Y?Fill in or CIRCLE the correct answer2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?P-value: 0.0000187 Circle one PLAUSIBLE NOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the conficient is zero?95% CI [-70.0 , 15.8] Circle one PLAUSIBLE NOT	I his is an exam. Do not discuss it with anyone.				
2.1 Boxplot the residuals (do not turn in the plot.) Which city has the largest absolute residual? What is the numerical value of that residual and what is its Y? 2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?City name: Hamm Residual: 144.5 Y: 191.4%Use model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.P-value: 0.0000187 Circle one PLAUSIBLE NOT3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.193.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! NOT4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one PLAUSIBLE NOT	-				
the plot.) Which city has the largest absolute residual? What is the numerical value of that residual? What is the numerical value of that residual? What is the numerical value of that residual and what is its Y?City name: Hamm2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?Residual: 144.5 Y: 191.4%Use model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.1992 $\gamma_2 = \gamma_4 = 0$, that is, the coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DIAUSIBLE NOT		Fill in or CIRCLE the correct answer			
absolute residual? What is the numerical value of that residual and what is its Y?Residual: 144.5 Y: 191.4% 2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?Residual: 144.5 Y: 191.4% Use model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1938.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What is the name of the test statistic? Give the degrees of freedom for the test. What	-				
value of that residual and what is its Y?Residual: 144.5 Y: 191.4% 2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?P-value: 0.0000187 Circle one PLAUSIBLE NOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI $[-70.0], 15.8$ 95% CII. ATUE IF E NOT	· ·	City name: Hamm			
2.2 Do a normal quantile plot of the residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?P-value: 0.0000187 Circle one PLAUSIBLE NOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one PLAUSIBLE NOT	absolute residual? What is the numerical				
residuals (do not turn in the plot) and a Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?P-value: 0.0000187 Circle one PLAUSIBLE NOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI[-70.0 , 15.8] Circle one DIAUSIBLE NOT	value of that residual and what is its Y?	Residual: 144.5 Y: 191.4%			
Shapiro-Wilk test. What is the p-value from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?Circle one PLAUSIBLE NOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.Fill in or CIRCLE the correct answer3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the numerical value of the test statistic? What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI[-70.0 , 15.8] Circle one DIAUSIBLE NOT	2.2 Do a normal quantile plot of the				
from the Shapiro-Wilk test? Is it plausible that the residuals are Normal?PLAUSIBLENOTUse model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT	residuals (do not turn in the plot) and a	P-value: 0.0000187			
that the residuals are Normal?Use model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT	Shapiro-Wilk test. What is the p-value	Circle one			
Use model 2 to answer the parts of question 3. For the purpose of question 3, assume model 2 is true. Fill in or CIRCLE the correct answer 3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988. Fill in or CIRCLE the correct answer 3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2. TRUE FALSE 3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible? An F statistic has both numerator and denominator degrees of freedom! NoT 4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that 95% CI [-70.0 , 15.8] 95% CI [-70.0 , 15.8] [Circle one plausible function of plausible function		PLAUSIBLE NOT			
question 3. For the purpose of question 3, assume model 2 is true.Fill in or CIRCLE the correct answer3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT	that the residuals are Normal?				
question 3. For the purpose of question 3, assume model 2 is true.Fill in or CIRCLE the correct answer3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.Fill in or CIRCLE the correct answer3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT					
3, assume model 2 is true.3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DEI AUSIBLE NOT					
3.1 Model 2 provides strong evidence that cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.TRUE FALSE3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DENOT		Fill in or CIRCLE the correct answer			
cities whose populations grew substantially from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988. 3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2. 3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible? 4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that	,				
from 1919 to 1939 continued on to grow substantially more than other cities from 1939 to 1988.TRUEFALSE3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUEFALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI $[-70.0, 15.8]$ Circle one DIAUSIBLE	1 0				
substantially more than other cities from 1939 to 1988.3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT					
1939 to 1988.3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUE FALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_{2=} \gamma_{3=} = \gamma_{4=}0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIDI E		TRUE FALSE			
3.2 In model 2, cities with more rubble from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUEFALSE3.3 In model 2, test the hypothesis H0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one PLAUSIBLE NOT	•				
from the War typically grew more than cities with less rubble, among cities similar in terms of other variables in model 2.TRUEFALSE3.3 In model 2, test the hypothesis H ₀ : $\gamma_{2}=\gamma_{3}=\gamma_{4}=0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI $[-70.0, 15.8]$ Circle one DI AUSIPLE NOT					
cities with less rubble, among cities similar in terms of other variables in model 2. 3.3 In model 2, test the hypothesis H ₀ : $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible? 4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that					
in terms of other variables in model 2.3.3 In model 2, test the hypothesis H_0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru,F and Re are zero, so these war relatedvariables have zero coefficients. What isthe name of the test statistic? What is thenumerical value of the test statistic? Givethe degrees of freedom for the test. What isthe p-value. Is the null hypothesisplausible?		TRUE FALSE			
3.3 In model 2, test the hypothesis H_0: $\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru, F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?An F statistic has both numerator and denominator degrees of freedom! Name: (partial)-F-test Value: 11.194. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT					
$\begin{array}{c} \gamma_{2} = \gamma_{3} = \gamma_{4} = 0, \text{ that is, the coefficients of Ru,} \\ F \text{ and Re are zero, so these war related} \\ \text{variables have zero coefficients. What is} \\ \text{the name of the test statistic? What is the} \\ \text{numerical value of the test statistic? Give} \\ \text{the degrees of freedom for the test. What is} \\ \text{the p-value. Is the null hypothesis} \\ \text{plausible?} \end{array}$ $\begin{array}{c} \text{denominator degrees of freedom!} \\ \text{Name: } (partial) - F - test \ Value: 11.19 \\ \text{Degrees of freedom: } 3 \text{ and } 116 \\ \text{p-value: } 0.00000167 \\ \text{Circle one} \\ \text{PLAUSIBLE} \ \text{NOT} \end{array}$	in terms of other variables in model 2.				
F and Re are zero, so these war related variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible? A. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that Name: (<i>partial</i>)- <i>F</i> -test Value: 11.19 Degrees of freedom: 3 and 116 p-value: 0.00000167 Circle one PLAUSIBLE NOT 95% CI [-70.0 , 15.8] Circle one DI AUSIBLE NOT	3.3 In model 2, test the hypothesis H_0 :	An F statistic has both numerator and			
variables have zero coefficients. What is the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?Degrees of freedom: 3 and 116 p-value: 0.00000167 Circle one PLAUSIBLE NOT4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one	$\gamma_2 = \gamma_3 = \gamma_4 = 0$, that is, the coefficients of Ru,	denominator degrees of freedom!			
the name of the test statistic? What is the numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?Degrees of freedom: 3 and 116 p-value: 0.00000167 Circle one PLAUSIBLE NOT4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle one	F and Re are zero, so these war related	Name: (partial)-F-test Value: 11.19			
numerical value of the test statistic? Give the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?p-value: 0.00000167 Circle one PLAUSIBLE NOT4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI $\begin{bmatrix} -70.0 & , & 15.8 \end{bmatrix}$ Circle one DI AUSIBLE NOT	variables have zero coefficients. What is				
the degrees of freedom for the test. What is the p-value. Is the null hypothesis plausible?Circle one PLAUSIBLE4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI -70.0 , 15.8Circle one Circle one	the name of the test statistic? What is the	Degrees of freedom: 3 and 116			
the p-value. Is the null hypothesis plausible?PLAUSIBLENOT4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI $[-70.0], 15.8$ Circle oneOUT	numerical value of the test statistic? Give				
and p bases in the analogy parameterplausible?4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI [-70.0 , 15.8] Circle oneCircle oneOIDI AUSIBLE	the degrees of freedom for the test. What is				
plausible?4. Fit model 3, assuming it to be true and give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that95% CI -70.0 , 15.8 15.8 Circle onePLAUSIBLE	the p-value. Is the null hypothesis	PLAUSIBLE NOT			
give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that D = A L S P L = NOT					
give a 95% confidence interval for the coefficient λ_1 of D=dist. Is it plausible that D = A USIBLE					
coefficient λ_1 of D=dist. Is it plausible that DI AUSIPIE E NOT	•	95% CI [-70.0 15.8]			
coefficient λ_1 of D=dist. Is it plausible that $DI \land USIBLE NOT$	0				
this coefficient is zero?	-				
	this coefficient is zero?	FLAUSIBLE NUI			

PROBLEM SET #1 STATISTICS 500 FALL 2010: Doing the problem set in R

```
Question 1.
> summary(lm(g3988~dist+rubble+flats+refugees))
Call:lm(formula = g3988 ~ dist + rubble + flats + refugees)
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 18.6381 19.6162 0.950 0.344000
                      -51.2013
dist
rubble
           -2.2511
           0.3618
flats
                       0.2700 1.340 0.182845
                       0.7121 3.572 0.000516 ***
refuqees
            2.5433
Residual standard error: 48.29 on 117 degrees of freedom
Multiple R-squared: 0.2254, Adjusted R-squared: 0.1989
F-statistic: 8.509 on 4 and 117 DF, p-value: 4.616e-06
Ouestion 1.5
> anova(lm(g3988~1),lm(g3988~dist+rubble+flats+refugees))
Analysis of Variance Table
Model 1: g3988 ~ 1
Model 2: g3988 ~ dist + rubble + flats + refugees
         RSS Df Sum of Sq F
 Res.Df
                                  Pr(>F)
1 121 352196
                    <u>79369</u> <u>8.50</u>92 4.616e-06 ***
    117 272827 4
2
Question 1.7
> confint(lm(g3988~dist+rubble+flats+refugees))
                2.5 % 97.5 %
(Intercept) -20.2107139 57.4869120
<u>dist</u> -91.8538551 -10.5487643
rubble
           -3.6817031 -0.8205187
           -0.1729454 0.8966347
flats
refugees
            1.1331156 3.9534813
Question 1.8
> which.min(dist_gg_border)
[1] 73
> gborder[73,]
   cities g3988 dist rubble flats refugees g1939 pop1988 pop1939
pop1919 dist_gg_border
73 Luebeck 35.90766 0.928
                           4.5 19.6 38.4 36.87975 210400 154811
113100
                5.4
> mod<-lm(g3988~dist+rubble+flats+refugees)</pre>
> mod$fit[73]
    73
65.7481
Question 2.1
> boxplot(mod$resid)
> which.max(abs(mod$resid))
50
50
> mod$resid[50]
     50
144.4552
> gborder[50,]
  cities g3988 dist rubble flats refugees g1939 pop1988 pop1939 pop1919
dist_gg_border
    Hamm 191.3526 0 20.3 60.3 20.5 28.89738 172000 59035 45800
50
152
```

Statistics 500 Bulk Pack - 199 -

PROBLEM SET #1 STATISTICS 500 FALL 2010: Doing the problem set in R, continued

```
Ouestion 2.2
> gqnorm(mod$resid)
> shapiro.test(mod$resid)
       Shapiro-Wilk normality test
data: mod$resid
W = 0.9356, p-value = 1.873e-05
Question 3.
> summary(lm(g3988~dist+rubble+flats+refugees+g1939))
Call:
lm(formula = g3988 ~ dist + rubble + flats + refugees + g1939)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 22.7149 19.8866 1.142 0.255715
          -52.7980
                       20.5376 -2.571 0.011411 *
dist
                      0.7214 -3.153 0.002058 **
           -2.2746
rubble
           0.3774
                      0.2699 1.398 0.164728
flats
refuqees
           2.7511
                      0.7324 3.756 0.000271 ***
g1939
          -0.2559
                      0.2171 -1.179 0.240865
Residual standard error: 48.21 on 116 degrees of freedom
Multiple R-squared: 0.2345, Adjusted R-squared: 0.2015
F-statistic: 7.108 on 5 and 116 DF, p-value: 7.837e-06
Question 3.3
> anova(lm(g3988~dist+g1939),lm(g3988~dist+rubble+flats+refugees+g1939))
Analysis of Variance Table
Model 1: g3988 ~ dist + g1939
Model 2: g3988 ~ dist + rubble + flats + refugees + g1939
 Res.Df RSS Df Sum of Sq
                               F
                                     Pr(>F)
1
    119 347615
    116 269597 3
2
                     78018 11.190 1.669e-06 ***
This F-test has 3 and 116 degrees of freedom.
Question 4
> confint(lm(g3988~dist+g1939))
                 2.5 % 97.5 %
(Intercept) 42.2449698 80.1674037
dist <u>-70.0433787 15.8198535</u>
g1939
            -0.4506696 0.4818223
```

PROBLEM SET #2 STATISTICS 500 FALL 2010: DATA PAGE 1 Due in class Thursday 2 December 2010 at noon. This is an exam. Do not discuss it with anyone.

The data are the same as in Problem 1, from Redding and Strum (2008) The costs of remoteness: evidence from German division and reunification. *American Economic Review*, 98, 1766-1797. You can obtain the paper from the library web-page, but there is no need to do that to do the problem set.

The paper discusses the division of Germany into East and West following the Second World War. Beginning in 1949, economic activity that crossed the East/West divide was suppressed. So a West German city that was close to the East German border was geographically limited in commerce. Redding and Strum were interested in whether such cities had lower population growth than cities far from the East/West boarder.

The data are in the data.frame **gborder**. The outcome is $\mathbf{Y} = g3988$, which is the percent growth in population from 1939 to 1988. (Germany reunified in 1990.) The variable dist is a measure of proximity to the East German border. Here, \mathbf{D} = dist would be 1 if a city were on the border, it is 0 for cities 75 or more kilometers from the border, and in between it is proportional to the distance from the border, so dist=1/2 for a city 75/2 = 37.5 kilometers from the border. Redding and Strum would predict slow population growth for higher values of dist. The variables \mathbf{Ru} = rubble, \mathbf{F} = flats and \mathbf{Re} = refugees describe disruption from World War II. Here, rubble is cubic meters of rubble per capita, flats is the number of destroyed dwellings as a percent of the 1939 stock of dwellings, and refugees is the percent growth in the population of the city from 1919 to 1939. Also in gborder are the populations and distances used to compute the quantities growth rates and dist variables; for instance, dist_gg_border is the distance in kilometers to the East German border.

> dim(gborder)

[1] 122 11

	cities	g3988	dist	rubble	flats	refugees	g1939
1	Aachen	43	0	21	48	16	11
2	Amberg	33	0	0	1	24	22
3	Ansbach	48	0	3	4	25	26
4	Aschaffenburg	36	0	7	38	19	41
4	Augsburg	32	0	б	24	20	20

If you are using R, the data are available on my webpage, http://www-

stat.wharton.upenn.edu/~rosenbap/index.html in the object gborder. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather that using the file already on your computer. In Firefox, this would be Tools -> Clear Private Data and check cache. If you cannot find the gborder object when you download the new R workspace, you probably have not downloaded the new file and are still working with the old one.

If you are not using R, the data are available in a .txt file (notepad) at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/
as benzene.txt, or

http://stat.wharton.upenn.edu/statweb/course/Fall-

<u>2008/stat500/gborder.txt</u> The list of files here is case sensitive, upper case separate from lower case, so benzene.txt is with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files.

PROBLEM SET #2 STATISTICS 500 FALL 2010: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

In the current analysis, we will follow the paper more closely than we did in Problem 1. They used a coded variable for proximity to the East/West German border, specifically 1 if within 75 KM of the border, 0 otherwise. In R, create the variable as follows:

> border<-1*(gborder\$dist_gg_border<=75)</pre>

```
> border[1:10]
```

```
[1] 0 0 0 0 0 0 0 1 1 0
```

```
> rm(border)
```

```
> attach(gborder)
```

Model #A

Y = $\beta_0 + \beta_1$ border + β_2 Ru + β_3 F + β_4 Re + ϵ with ϵ iid N(0, σ^2) or g3988= $\beta_0 + \beta_1$ border + β_2 Rubble + β_3 Flats + β_4 Refugees + ϵ

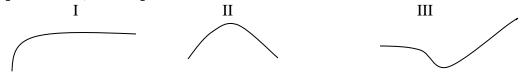
For question 1.2, the reasons are:

A: This city grew the most between 1939 and 1988.

B: This city was high on rubble but not high on flats or refugees.

C: This city has an unusual value of refugees.

D: The growth of this city from 1939 to 1988 does not fit with its value of refugees. **For question 1.7, the descriptions are**:


a: This growth rate for this city lies above the regression plane and it raises its own predicted value by more than 1 standard error.

b: This growth rate for this city lies below the regression plane and it lowers its own predicted value by more than 1 standard error.

c: This growth rate for this city lies above the regression plane and it raises its own predicted value by less than 1 standard error.

d: This growth rate for this city lies below the regression plane and it lowers its own predicted value by less than 1 standard error.

For question 2.1, the shapes are:

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

PROBLEM SET #2 STATISTICS 500 FALL 2010: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone.Fit model A and use it to answer the following questions.Fill in or circle the correct answer.1.1 In model A, which city has the largest leverage (or hat value or h_i or Sheather's h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large?City:
Fit model A and use it to answer the following questions.Fill in or circle the correct answer.1.1 In model A, which city has the largest leverage (or hat value or h_i or Sheather's h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large?City:1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLatter of one best reason:
following questions.Image: following questions.1.1 In model A, which city has the largest leverage (or hat value or h_i or Sheather's h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large?City:1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
1.1 In model A, which city has the largest leverage (or hat value or h_i or Sheather's h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large? 1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you found
leverage (or hat value or h_i or Sheather's h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large?City: $h_i = \$
h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large? $h_i = _____$ cut-off = $_____$ LARGE1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
h_{ii})? (Give the name of the city.) What is the numerical value of h_i ? What is the numerical value of the cut-off for judging whether h_i is large? Is it large? $h_i = ____$ cut-off = ____ LARGE1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
numerical value of the cut-off for judging whether h_i is large? Is it large?LARGENOT LARGE1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
whether h_i is large? Is it large?LARGENOT LARGE1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
1.2 From the reasons listed on the data page, write in the letter (A or B or C or D) of the one best reason for what you foundLetter of one best reason:
page, write in the letter (A or B or C or D) of the one best reason for what you found
of the one best reason for what you found
in 1.1
1.3 Test the null hypothesis that the
residuals of model A are Normal. What is Name: P-value:
the name of the test? What is the p-value?
Is it plausible that the residuals are PAUSIBLE NOT PLAUSIBLE
Normal?
1.4 In model A, which city has the largest
absolute studentized residual? Give the City: Value:
name of the city and the numerical value
with sign of this studentized residual.
1.5 Is the city you identified in 1.4 a
statistically significant outlier at the 0.05 OUTLIER NOT AN OUTLIER
level? How large would the absolute value
of the studentized residual have to be to be
significant as an outlier at the 0.05 level? How large:
Give a number.
1.6 In model A, which city has the largest
absolute dffits? Name the city. What is City: Value:
the numerical value (with sign) of this
dffits?
1.7 Select the one letter of the one best
description on the data page for what you Letter: found in 1.6. Give one letter.
1.8 Test for nonlinearity in model A using Tukey's one-degree of freedom. Give the t-statistic p-value:
Tukey's one-degree of freedom. Give the t-statistic and the p-value. Does this testt-statistic p-value:
reject the linear model at the 0.05 level? REJECTS AT 0.05 DOES NOT
Reject the mean model at the 0.05 level. Rejectis AT 0.05 DOES NOT

Name: ID#					
PROBLEM SET #2 STATISTICS 500 FALL 2010: ANSWER PAGE 2					
This is an exam. Do not discuss it with anyone.					
	Fill in or circle the correct answer.				
2.1 The estimated coefficient for refugees in model A is 2.68 suggesting that more refugees from Eastern Germany is	Name: Value:				
associated with more rapid growth of population. Test for parallelism in this slope for cities near (border =1) and far	P-value:				
from (border = 0) the border. Give the name and value of the test statistic and the p-value. Is parallelism plausible?	PLAUSIBLE NOT PLAUSIBLE				
2.2 In 2.1, whether or not the parallelism is rejected, look at the <i>estimated</i> slopes of the two fitted nonparallel lines. Based on the <i>point estimates</i> of slopes, is the estimated slope near the border (border = 1) steeper upwards than the estimated slope far from the border (border = 0)?	YES NO				
2.3 Plot the residuals for model A (as Y vertical) against flats (as X horizontal). Add a lowess curve to the plot. Which of the 3 shapes on the data page does the lowess plot most closely resemble? Give one Roman numeral, I, II or III. (In R, use the default settings for lowess.)	Roman numeral:				
2.4 Center flats at its mean and square the result. Add this centered quadratic term to model A. Test the null hypothesis that model A is correct in specifying a linear relationship between population growth	Name: P-value:				
and flats against the alternative that it is quadratic. Give the name and value of the test statistic and the p-value. Is a linearity plausible?	PLAUSIBLE NOT PLAUSIBLE				
2.5 Give the multiple squared correlation, R^2 , for model A and the model in 2.4, and	R^2 estimate of σ				
the estimate of the standard deviation, σ , of the true errors.	Model A				
	Model in 2.4				

This is an exam. Do not discuss it with anyone.
PROBLEM SET #2 STATISTICS 500 FALL 2010: ANSWER PAGE 1
ANSWERS

This is an exam. Do not discuss it with anyone.				
Fit model A and use it to answer the	Fill in or circle the correct answer.			
following questions.				
1.1 In model A, which city has the largest				
leverage (or hat value or h_i or Sheather's	City: Datteln			
h_{ii} ? (Give the name of the city.) What is				
the numerical value of h_i ? What is the	$h_i = 0.173$ cut-off = 0.082			
numerical value of the cut-off for judging				
whether h_i is large? Is it large?	(LARGE) NOT LARGE			
1.2 From the reasons listed on the data	Letter of one best reason:			
page, write in the letter (A or B or C or D)	В			
of the one best reason for what you found	<i>Plot Y=flats versus X=rubble and find</i>			
in 1.1.	Datteln.			
1.3 Test the null hypothesis that the				
residuals of model A are Normal. What is	Name:Shapiro-Wilk P-value: 0.0000108			
the name of the test? What is the p-value?				
Is it plausible that the residuals are	PAUSIBLE NOT PLAUSIBLE			
Normal?				
1.4 In model A, which city has the largest				
absolute studentized residual? Give the	City: Hamm Value: 3.088			
name of the city and the numerical value				
with sign of this studentized residual.				
1.5 Is the city you identified in 1.4 a				
statistically significant outlier at the 0.05	OUTLIER NOT AN OUTLIER			
level? How large would the absolute value				
of the studentized residual have to be to be	How large: $>= 3.639$			
significant as an outlier at the 0.05 level?	122 tests, each 2-sided, with 116 df			
Give a number.	qt(1-0.025/122, 116)			
1.6 In model A, which city has the largest				
absolute dffits? Name the city. What is	City: <i>Moers</i> Value: 1.0763			
the numerical value (with sign) of this				
dffits?				
1.7 Select the one letter of the one best	Letter: a. 1.0763 is positive, so above,			
description on the data page for what you	pulling up. Value is >1 , so more than 1			
found in 1.6. Give one letter.	standard error.			
1.8 Test for nonlinearity in model A using				
Tukey's one-degree of freedom. Give the	t-statistic 1.82 p-value: 0.072			
t-statistic and the p-value. Does this test				
reject the linear model at the 0.05 level?	REJECTS AT 0.05 ODES NOT			
	Close, but not quite.			

Name:	ID#					
	PROBLEM SET #2 STATISTICS 500 FALL 2010: ANSWER PAGE 2					
I his is an exam. Do ho	t discuss it with anyone. Fill in or circle the correct answer.					
2.1 The estimated coefficient for refugees	This is chere the context answer.					
in model A is 2.68 suggesting that more						
refugees from Eastern Germany is	Name: <i>t-statistic</i> Value: -1.41					
associated with more rapid growth of						
population. Test for parallelism in this	P-value: 0.16					
slope for cities near (border =1) and far						
from (border = 0) the border. Give the						
name and value of the test statistic and the	PLAUSIBLE NOT PLAUSIBLE					
p-value. Is parallelism plausible?	TEAUSIDEE NOT TEAUSIDEE					
2.2 In 2.1, whether or not the parallelism is						
rejected, look at the <i>estimated</i> slopes of the						
two fitted nonparallel lines. Based on the						
<i>point estimates</i> of slopes, is the estimated	YES NO					
slope near the border (border = 1) steeper						
upwards than the estimated slope far from	No, it's steeper away from the border, but					
the border (border = 0)?	from 2.1, it is not significantly different.					
2.3 Plot the residuals for model A (as Y						
vertical) against flats (as X horizontal).						
Add a lowess curve to the plot. Which of	Roman numeral: <i>III</i>					
the 3 shapes on the data page does the	Komun numerui. m					
lowess plot most closely resemble? Give						
one Roman numeral, I, II or III. (In R, use						
the default settings for lowess.)						
2.4 Center flats at its mean and square the						
result. Add this centered quadratic term to	Name: <i>t-statistic</i> Value: 3.567					
model A. Test the null hypothesis that						
model A is correct in specifying a linear	P-value: 0.000527					
relationship between population growth						
and flats against the alternative that it is						
quadratic. Give the name and value of the	PLAUSIBLE NOT PLAUSIBLE					
test statistic and the p-value. Is a linearity						
plausible?						
2.5 Give the multiple squared correlation,	R^2 estimate of σ					
\mathbb{R}^2 , for model A and the model in 2.4, and						
the estimate of the standard deviation, σ , of	Model A 0.230 48.14					
the true errors.						
	Model in 2.4 0.306 45.9					

```
Problem Set 2, Fall 2010 Doing the Problem Set in R
> modA<-lm(g3988 ~ border + rubble + flats + refugees)</pre>
> modA
                  border
                               rubble
 (Intercept)
                                             flats
                                                      refugees
   14.4864
               -32.9477
                             -2.1635
                                           0.4005
                                                      2.6808
1.1 leverage
> which.max(hatvalues(modA))
22
> hatvalues(modA)[22]
0.1733585
> 2*mean(hatvalues(modA))
[1] 0.08196721
> 2*5/122
[1] 0.08196721
> gborder[22,]
   cities g3988 dist rubble flats refugees border
22 Datteln 79.24853 0 32.7 20.4
                                         20.1
                                                   0
1.2 Looking at and understanding a high leverage point
> summary(gborder)
> plot(rubble,flats)
> abline(v=32.7)
> abline(h=20.4)
1.3 Test for normality
> shapiro.test(modA$resid)
       Shapiro-Wilk normality test
W = 0.9319, p-value = 1.079e-05
1.4 Studentized residual
> which.max(abs(rstudent(modA)))
50
> rstudent(modA)[50]
     50
3.087756
> gborder[50,]
  cities
            g3988 dist rubble flats refugees border
    Hamm 191.3526 0 20.3 60.3
                                        20.5
50
                                                0
1.5 Outlier test
> qt(.025/122,116)
[1] -3.63912
> qt(1-0.025/122,116)
[1] 3.63912
```

```
Problem Set 2, Fall 2010, continued
1.6 and 1.7 dffits
> which.max(abs(dffits(modA)))
81
> dffits(modA)[81]
1.076284
> gborder[81,]
             g3988 dist rubble flats refugees
   cities
                                                 border
81 Moers 241.6411
                    0
                           1.6 75.7
                                         25.3
                                                  0
1.8 Tukey's one degree of freedom for nonadditivity
> tk<-tukey1df(modA)</pre>
> summary(lm(g3988 ~ border + rubble + flats + refugees+tk))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.3745
                        19.6169
                                0.529 0.597914
border
           -39.0843
                       12.7927 -3.055 0.002791 **
                        0.7314 -3.326 0.001181 **
rubble
            -2.4323
                        0.2644 1.562 0.120985
flats
              0.4130
refugees
              2.7826
                         0.7163 3.885 0.000171 ***
              0.9209
                         0.5064
                                  1.819 0.071525 .
tk
2.1 and 2.2 Testing parallelism
> brinteraction<-border*refugees</pre>
> summary(lm(g3988 ~ border + rubble + flats + refugees +
brinteraction))
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                2.5808
                          21.3277
                                    0.121 0.903896
border
               18.5806
                          38.5088
                                    0.483 0.630358
rubble
                          0.7233 -3.122 0.002269 **
               -2.2582
                                  1.608 0.110571
flats
                0.4285
                           0.2665
                          0.8256 3.945 0.000137 ***
refuqees
                3.2569
brinteraction -2.0877
                          1.4770 -1.413 0.160193
Slope near border estimated to be
> 3.2569+(-2.0877)
[1] 1.1692
so it is steeper (3.26) far from the border and shallower (1.17)
near the border.
```

2.5

> summary(modA)

Residual standard error: <u>48.14</u> on 117 degrees of freedom Multiple R-squared: <u>0.2302</u>, Adjusted R-squared: 0.2038 F-statistic: 8.745 on 4 and 117 DF, p-value: 3.271e-06

> modB<-lm(g3988 ~ border + rubble + flats + refugees+flatsc2)
> summary(modB)
Residual standard error: 45.9 on 116 degrees of freedom
Multiple R-squared: 0.3062, Adjusted R-squared: 0.2763
F-statistic: 10.24 on 5 and 116 DF, p-value: 3.796e-08

PROBLEM SET #3 STATISTICS 500 FALL 2010: DATA PAGE 1 Due in Monday 20 December 2010 at noon. This is an exam. Do not discuss it with anyone.

The first part of this problem set again uses the data from Problems 1 and 2, from Redding and Strum (2008) The costs of remoteness: evidence from German division and reunification. *American Economic Review*, 98, 1766-1797. You can obtain the paper from the library web-page, but there is no need to do that to do the problem set.

The paper discusses the division of Germany into East and West following the Second World War. Beginning in 1949, economic activity that crossed the East/West divide was suppressed. So a West German city that was close to the East German border was geographically limited in commerce. Redding and Strum were interested in whether such cities had lower population growth than cities far from the East/West boarder.

The data for the first part are in the data.frame **gborder**. The outcome is $\mathbf{Y} = g3988$, which is the percent growth in population from 1939 to 1988. (Germany reunified in 1990.) The variable dist is a measure of proximity to the East German border. Here, \mathbf{D} = dist would be 1 if a city were on the border, it is 0 for cities 75 or more kilometers from the border, and in between it is proportional to the distance from the border, so dist=1/2 for a city 75/2 = 37.5 kilometers from the border. Redding and Strum would predict slow population growth for higher values of dist. The variables \mathbf{Ru} = rubble, \mathbf{F} = flats and \mathbf{Re} = refugees describe disruption from World War II. Here, rubble is cubic meters of rubble per capita, flats is the number of destroyed dwellings as a percent of the 1939 stock of dwellings, and refugees is the percent of the 1961 city population that were refugees from eastern Germany. Finally, \mathbf{G} = g1939 is the percent growth in the population of the city from 1919 to 1939. The actual distance to the border with East Germany is \mathbf{Ad} =dist_gg_border.

> dim(gborder) [1] 122 11

In R, you will want the **leaps package** for variable selection and the **DAAG package** for press. The first time you use these packages, you must install them at the Package menu. Every time you use these packages, including the first time, you must load them at the Packages menus.

If you are using R, the data are available on my webpage, http://www-

stat.wharton.upenn.edu/~rosenbap/index.html in the objects gborder and pku. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather than using the file already on your computer. In Firefox, this would be Tools -> Clear Private Data and check cache. If you cannot find the gborder object when you download the new R workspace, you probably have not downloaded the new file and are still working with the old one.

If you are not using R, the data are available in a .txt file (notepad) at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ gborder.txt and pku.txt. The list of files here is case sensitive, upper case separate from lower case, so

pku.txt is with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files.

There are three options about **turning in the exam**. (i) You can deliver it to my office 473 JMHH on Monday 20 December at noon. Any time before noon on Monday 20 December, you can (ii) place it in a sealed envelope addressed to me and leave it in my mail box in the statistics department, 4^{th} floor JMHH, or (iii) you can leave it with Adam at the front desk in the statistics department. Make and keep a photocopy of your answer page – if something goes wrong, I can grade the photocopy. The statistics department is locked at night and on the weekend. Your **course grade** will be available from the registrar shortly after I grade the finals. I will put the **answer key** in an updated version of the bulkpack on my web page shortly after I grade the final.

Statistics 500 Bulk Pack - 211 -

PROBLEM SET #3 STATISTICS 500 FALL 2010: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

In the current analysis, we will follow the paper more closely than we did in Problem 1. They used a coded variable for proximity to the East/West German border, specifically 1 if within 75 KM of the border, 0 otherwise. In R, create the variable as follows:

> border<-1*(gborder\$dist_gg_border<=75)</pre>

> attach(gborder)

Model #A

 $Y = \beta_0 + \beta_1 \text{border} + \beta_2 D + \beta_3 \text{Ad} + \beta_4 \text{Ru} + \beta_5 \text{F} + \beta_6 \text{Re} + \beta_7 \text{G} + \epsilon \text{ with } \epsilon \text{ iid } N(0, \sigma^2)$ or g3988= $\beta_0 + \beta_1 \text{border} + \beta_2 D + \beta_3 \text{Ad} + \beta_4 \text{Rubble} + \beta_5 \text{Flats} + \beta_6 \text{Refugees} + \beta_7 \text{g1939} + \epsilon$

Model #B

 $Y = \gamma_0 + \gamma_1 Ru + \gamma_2 Re + \xi$ with ξ iid $N(0,\omega^2)$

Model #C

 $Y = \theta_0 + \theta_1 border + \theta_2 Ru + \theta_3 F + \theta_4 Re + \theta_5 G + \zeta \text{ with } \zeta \text{ iid } N(0, \upsilon^2)$

Use Y, border, D, Ad, Ru, F, Re and G to refer to specific variables.

The second data set is adapted from Sitta, A. et al. (2009) Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutation Research, 679, 13-16. Again, you may look at the paper on the library webpage, but you do not need to do so for this problem. To simplify this problem set, the data are adapted to make a balanced design, 8 people per group, selected from the paper's unbalanced design by simple random sampling. They studied a genetic disorder, phenylketonuria (PKU), which affects the metabolism of phenylalanine (Phe). The study has three groups, a unaffected control group with 8 people, and two groups of 8 individuals with PKU. The two groups of people with PKU are distinguished by the level of Phe in their blood, highPhe is > 600 μ mol/L, lowPhe is < = 600 μ mol/L. The outcome, Y = DI, is a measure of genetic damage in certain blood cells, the comet tail assay from leukocytes. So you are to use two variables, Y = DI and group, in the object **pku** in the R workspace.

-Model #D

 $Y_{ij} = \mu + \tau_j + \varepsilon_{ij}$ with ε iid N(0, σ^2) i=1,...,8, j=1,2,3, with $\tau_1 + \tau_2 + \tau_3 = 0$. In answering questions, refer to groups as "control", "lowPhe" or "highPhe".

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Name: ID#					
PROBLEM SET #3 STATISTICS 500 FALL 2010: ANSWER PAGE 1					
This is an exam. Do no	t discuss it with anyone.				
Fit model A. Use Y, border, D, Ad, Ru,	Fill in or CIRCLE the correct answer				
F, Re and G to refer to specific variables					
1.1 If you were to remove all variables	Give names of variables removed:				
from model A with t-statistics that were not					
significant in a 2-sided, 0.05 level test,					
which would you remove?					
1.2 Test the null hypothesis that model B is					
an adequate model against the alternative	Name: Value:				
that model A is better. Give the name and					
value of the test statistic, the degrees of	Degrees of freedom: P-value:				
freedom, the p-value. Is the null					
hypothesis plausible?	PLAUSIBLE NOT PLAUSIBLE				
1.3 Including the empty model with no					
variables and model A itself, how many	Number of models:				
models can be formed from model A by					
deleting 0, 1,, or 7 variables?					
1.4 Of the models in part 1.3 above, which	Give names of variables in this model:				
one model has the smallest C _P statistic?					
List the variables included in this model.					
1.5 What is the numerical value of C_P for					
the model you identified in 1.4? If the	Value of C _P :				
model in 1.4 contained all of the variables	What number would C _P be estimating?				
with nonzero coefficients, what number					
would C_P be estimating? Give one number.	Number:				
1.6 Is there another model with the same					
number of variables as the model in 1.4 but	YES NO				
with different variables such that the value					
of C_P for this other model is also consistent	Value of C _P :				
with this other model containing all the					
variables with nonzero coefficients? Circle	Give names of variables in this model:				
YES or NO. If YES, then give the value of					
C _P and the predictor variables in this					
model. If NO, leave other items blank.					
1.7 Give PRESS and C _P values for model	Model A Model C				
A and C. Also, give the number of					
coefficients (including the constant) in	PRESS				
these two models. If these estimates were					
not estimates but true values of what they	Ср				
estimate, which model, A or C, would					
predict better? CIRCLE A or C.	# coeffs				
	Better Predicts A C				

Name: ID#					
PROBLEM SET #3 STATISTICS 500 FALL 2010: ANSWER PAGE 2					
	This is an exam.			•	
-	and Model D for the		Fill in or	CIRCLE th	e correct answer
-	to groups as "contro	l",			
"lowPhe" or "hig					
	and test the null hypo				
	are Normal. What is		Name:	I	P-value:
	What is the P-value	?			
Is the null hypoth			PLAUSIB	LE N	OT PLAUSIBLE
	est the null hypothes				
H ₀ : $\tau_1 = \tau_2 = \tau_3 =$	0. Give the name an	nd	Name:		Value:
value of the test-	statistic, the degrees	of			
freedom, the P-va	alue, and state wheth	er the	Degrees of fr	reedom:	P-value:
null hypothesis is	s plausible.				
			PLAUSIB	LE N	OT PLAUSIBLE
2.3 Test the three	• •				
	$\tau_1 = \tau_3 \text{ and } H_{23} \text{:} \tau_2 =$	-			
	ethod at the two-side				
	hose hypotheses that				
•	nethod. That is, list I				
	H_{23} or write NONE				
	ere true and H ₁₂ were				
	vere false, then the cl				
that Tukey's met	hod in 2.3 will reject	at	Г	TRUE	FALSE
least one of the h	ypotheses H_{12} : $\tau_1 = \tau$	2,			
H_{13} : $\tau_1 = \tau_3$ and H_{13}	H_{23} : $\tau_2 = \tau_3$ is at most	0.05			
despite testing the	ree hypotheses.				
2.5 Give two ort	hogonal contrasts wi	th	Group cont	trol lowI	Phe highPhe
integer weights to	o test the two hypoth	eses			
that: H _C control d	loes not differ from t	he	H _C		
average of the tw	o PKU groups and H	I _{hl}			
that high and low	Phe groups do not d	liffer.	H _{hl}		
Fill in 6 integer v					
	and the contrasts in 2			ving anova	
Source	Sum of squares I	Degrees	of freedom	Mean Squ	are F-statistic

Source	Sum of squares	Degrees of freedom	Mean Square	F-statistic
Between groups				
Contrast H _C				
Contrast H _{hl}				
Within groups				

PROBLEM SET #3 STATISTIC	PROBLEM SET #3 STATISTICS 500 FALL 2010: ANSWERS						
Fit model A. Use Y, border, D, Ad, Ru, F, Re and	Fill in or CIRCLE the correct answer						
G to refer to specific variables	Use Ru not Rubble as a variable name.						
1.1 If you were to remove all variables from model	Give names of variables removed:						
A with t-statistics that were not significant in a 2-	border, D, Ad, F and G.						
sided, 0.05 level test, which would you remove?							
1.2 Test the null hypothesis that model B is an							
adequate model against the alternative that model A is better. Give the name and value of the test	Name: F-statistic Value: 2.4199						
statistic, the degrees of freedom, the p-value. Is the null hypothesis plausible?	Degrees of freedom: 5 and 114 P-value: 0.0399						
	PLAUSIBLE NOT PLAUSIBLE						
1.3 Including the empty model with no variables and model A itself, how many models can be formed from model A by deleting 0, 1,, or 7 variables?	Number of models: $2^7 = 128$						
1.4 Of the models in part 1.3 above, which one model has the smallest C_P statistic? List the variables included in this model.	Give names of variables in this model: border, Ru, F, Re						
1.5 What is the numerical value of C_P for the model you identified in 1.4? If the model in 1.4 contained all of the variables with nonzero coefficients, what number would C_P be estimating? Give one number.	Value of C_P : 4.008623 What number would C_P be estimating? Number: 5						
1.6 Is there another model with the same number of variables as the model in 1.4 but with different variables such that the value of C_P for this other model is also consistent with this other model containing all the variables with nonzero coefficients? Circle YES or NO. If YES, then give the value of C_P and the predictor variables in this model. If NO, leave other items blank.	YESNOValue of C_P :4.733086Give names of variables in this model: D, Ru, F, Re						
1.7 Give PRESS and C_P values for model A and C. Also, give the number of coefficients (including the constant) in these two models. If these estimates were not estimates but true values of what they estimate, which model, A or C, would predict better? CIRCLE A or C.	Model A Model C PRESS 314,191.8 298,914.3 C _P 8.000 4.761 # coeffs 8 6 Better Predicts A C						

PROBLEM SET #3 STATISTICS 500 FALL 2010: ANSWERS

PROBLEM SET #3 STATISTICS 500 FALL 2010: ANSWER PAGE 2.

1	Model D for these qu control", "lowPhe" or	estions.	Fill in or CIRCLE the correct answer			
2.1 Fit model D and	test the null hypothesi What is the name of plausible?		Name: <i>Shapiro-Wilk test</i> P-value: 0.42			
2.2 In model D, test H_0 : $\tau_1 = \tau_2 = \tau_3 = 0$. test-statistic, the degrand state whether the	Name: <i>F-statistic</i> Value: 68.3 Degrees of freedom: 2 and 21 P-value: 6.4×10^{-10}					
			PLAUSIBLE NOT PLAUSIBLE			
2.3 Test the three null hypotheses, H_{12} : $\tau_1 = \tau_2$, H_{13} : $\tau_1 = \tau_3$ and H_{23} : $\tau_2 = \tau_3$ using Tukey's method at the two-sided 0.05 level. List those hypotheses that are rejected by this method. That is, list H_{12} and/or H_{13} and/or H_{23} or write NONE.			H_{12} and H_{13} and H_{23}			
2.4 If model D were true and H_{12} were true but H_{13} and H_{23} were false, then the chance that Tukey's method in 2.3 will reject at least one of the hypotheses H_{12} : $\tau_1 = \tau_2$, H_{13} : $\tau_1 = \tau_3$ and H_{23} : $\tau_2 = \tau_3$ is at most 0.05 despite testing three hypotheses.			TRUE FALSE			
2.5 Give two orthog weights to test the tw	Group contro	l lowPhe	highI	Phe		
does not differ from the average of the two PKU groups and H_{hl} that high and low Phe groups do not			H _C -2	1	1	
differ. Fill in 6 integer values.		H _{hl} 0	-1	1		
3. Use model D and the contrasts in 2.5 to fill in the following anova table.						
Source	Sum of squares	Degrees of	of freedom	Mean Square	e	F-statistic
Between groups	11956.5		2	5978.3		68.333

Between groups	11956.5	2	5978.3	68.333
Contrast H _C	9976.3	1	9976.3	114.031
Contrast H _{hl}	1980.2	1	1980.2	22.634
Within groups	1837.2	21	87.5	

Notice that 9976.3+1980.2 = 11956.5, so the sum of squares between groups has been partitioned into two parts that add to the total. This required orthogonal contrasts in a balanced design. Most of the action is control vs Pku, much less is high vs low.

Statistics 500, Fall 2010, Problem Set 3 Doing the Problem Set in R

```
> attach(gborder)
```

```
> border<-1*(gborder$dist_gg_border<=75)</pre>
```

> mod<-lm(g3988~dist+border+dist_gg_border+rubble+flats+refugees+g1939)</pre>

1.1

> summary(mod)

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept)5.4540229.643640.1840.854351dist-17.3174238.78915-0.4460.656119 -16.39592 24.86025 -0.660 0.510890 border dist_gg_border 0.06125 0.09352 0.655 0.513842 rubble -2.14487 0.73271 -2.927 0.004128 **
 0.38635
 0.27158
 1.423
 0.157578

 2.98494
 0.76520
 3.901
 0.000163

 -0.23866
 0.21851
 -1.092
 0.277036
 flats refugees g1939 ___ Residual standard error: 48.34 on 114 degrees of freedom Multiple R-squared: 0.2435, Adjusted R-squared: 0.197 F-statistic: 5.242 on 7 and 114 DF, p-value: 3.298e-05 1.2 > modLittle<-lm(g3988 ~ rubble+refugees)</pre> > anova(modLittle,mod) Analysis of Variance Table Model 1: g3988 ~ rubble + refugees Model 2: g3988~dist+border+dist_gg_border+rubble+flats+refugees+g1939 Res.Df RSS Df Sum of Sq F Pr(>F) 119 294718 1 114 266439 5 28279 2.4199 0.03993 * 2 1.3 > 2^7 [1] 128

```
1.4
> library(leaps)
> help(leaps)
> X<-cbind(dist,border,dist_gg_border,rubble,flats,refugees,g1939)</pre>
> result<-leaps(x=X,y=g3988,names=colnames(X))</pre>
> result
Śwhich
   dist border dist_gg_border rubble flats refugees g1939
1 FALSE FALSE
                        FALSE
                                  TRUE FALSE
                                                FALSE FALSE
1 FALSE FALSE
                         FALSE FALSE FALSE
                                                  TRUE FALSE
> which.min(result$Cp)
[1] 28
> result$which[28,]
dist border dist_gg_border
                                  rubble
                                              flats
                                                      refugees
                                                                  g1939
FALSE TRUE
            FALSE
                                  TRUE
                                              TRUE
                                                      TRUE
                                                                  FALSE
1.5
> result$Cp[28]
[1] 4.008623
> result$size[28]
[1] 5
It is often helpful to plot C_P:
> plot(result$size,result$Cp)
> abline(0,1)
1.6
> cbind(result$which,result$Cp,result$size)[result$Cp<=result$size,]</pre>
  dist border dist_gg_border rubble flats refugees g1939
4
     0
                             0
                                          1
                                                           0 4.008623 5
             1
                                    1
                                                    1
4
             0
                             0
                                    1
                                           1
                                                    1
                                                           0 4.733086 5
     1
     0
5
             1
                             0
                                    1
                                           1
                                                    1
                                                           1 4.761274 6
5
     0
             1
                             1
                                    1
                                          1
                                                    1
                                                           0 5.328695 6
5
     1
             0
                             0
                                    1
                                          1
                                                    1
                                                          1 5.351142 6
5
            0
                                                           0 5.622819 6
     1
                             1
                                    1
                                          1
                                                    1
5
     1
            1
                             0
                                    1
                                          1
                                                    1
                                                           0 5.748573 6
б
     0
            1
                             1
                                    1
                                          1
                                                    1
                                                          1 6.199318 7
                             0
                                          1
б
     1
            1
                                    1
                                                    1
                                                          1 6.428913 7
     1
             0
                             1
                                    1
                                          1
                                                          1 6.434971 7
б
                                                    1
7
     1
             1
                             1
                                    1
                                          1
                                                    1
                                                          1 8.000000 8
1.7
> library(DAAG)
> modC<-lm(g3988 ~ border+rubble+flats+refugees+g1939)</pre>
> press(modC)
[1] 298914.3
> press(mod)
[1] 314191.8
```

```
> mod<-aov(DI~group)</pre>
> shapiro.test(mod$residual)
        Shapiro-Wilk normality test
data: mod$residual
W = 0.9588, p-value = 0.4151
2.2
> summary(mod)
            Df Sum Sq Mean Sq F value
                                          Pr(>F)
            2 11956.6 5978.3 68.333 6.413e-10 ***
group
            21 1837.2
                         87.5
Residuals
_ _ _
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
2.3
> TukeyHSD(mod)
  Tukey multiple comparisons of means
    95% family-wise confidence level
Fit: aov(formula = DI ~ group)
$group
                  diff
                           lwr
                                      upr
                                              p adj
lowPhe-control 32.125 20.33691 43.91309 0.0000025
highPhe-control 54.375 42.58691 66.16309 0.0000000
highPhe-lowPhe 22.250 10.46191 34.03809 0.0003016
2.5 and 3
These are the default contrasts.
> contrasts(group)
        lowPhe highPhe
control
            0
                     0
lowPhe
                     0
             1
             0
                     1
highPhe
You need to change the default contrasts.
> contrasts(group)[,1]<-c(-2,1,1)
> contrasts(group)[,2]<-c(0,-1,1)
> colnames(contrasts(group))<-c("Pku vs Control","High vs Low")</pre>
> contrasts(group)
        Pku vs Control High vs Low
control
                    -2
                                  0
lowPhe
                     1
                                 -1
highPhe
                     1
                                  1
Now redo the model with the new contrasts and look at the model.matrix.
> mod<-lm(DI~group)</pre>
> model.matrix(mod)
Use the model matrix to create new variables.
> PkuVsC<-model.matrix(mod)[,2]</pre>
> HighVsLow<-model.matrix(mod)[,3]</pre>
```

2.1

PROBLEM SET #1 STATISTICS 500 FALL 2011: DATA PAGE 1 Due in class Tuesday 25 October 2011 at noon. This is an exam. Do not discuss it with anyone.

The data are from the Joint Canada/United States Survey of Health, which was a version of the National Health Interview Survey given to both Canadians and people in the US. The data came from http://www.cdc.gov/nchs/nhis/jcush.htm, but there is no need for you to go to that web page unless you want to.

If you are using R, the data are available on my webpage, <u>http://www-</u> <u>stat.wharton.upenn.edu/~rosenbap/index.html</u> in the object uscanada. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather than using the file already on your computer. In Firefox, you might have to clear recent history. If you cannot find the uscanada object when you download the new R workspace, you probably have not downloaded the new file and are still working with the old one.

If you are not using R, the data are available in a .csv file uscanada.csv at <u>http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/</u> A csv file should open in excel, so you can copy and paste it, and many programs can read csv files. The list of files here is case sensitive, upper case separate from lower case, so uscanada.csv is with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files

The variables are listed below. The newnames refer to the original CDC names (age is short for DJH1GAGE). In particular, PAJ1DEXP or dailyenergy is a measure of the average daily energy expended during leisure time activities by the respondent in the past three months, and it summarizes many questions about specific activities. The body mass index is a measure of obesity <u>http://www.nhlbisupport.com/bmi/</u>.

> us	scanadaLabels		
	newname	name	label
2	country	SPJ1_TYP	Sample type
11	age	DHJ1GAGE	Age - (G)
12	female	DHJ1_SEX	Sex
68	cigsperday	SMJ1_6	<pre># cigarettes per day (daily smoker)</pre>
88	bmi	HWJ1DBMI	Body Mass Index - (D)
89	weight	HWJ1DWTK	Weight - kilograms (D)
91	height	HWJ1DHTM	Height - metres - (D)
93	hasdoc	HCJ1_1AA	Has regular medical doctor
342	dailyenergy	PAJ1DEXP	Energy expenditure - (D)
343	minutes15	PAJ1DDFR	Partic. in daily phys. act. >15 min.
347	PhysAct	PAJ1DIND	Physical activity index - (D)
353	educ	SDJ1GHED	Highest level/post-sec. educ. att. (G)

PROBLEM SET #1 STATISTICS 500 FALL 2011: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due in class Tuesday 25 October 2011 at noon.

attach(uscanada)

Model #1

```
bmi = \beta_0 + \beta_1 age + \beta_2 cigsperday + \beta_3 dailyenergy + \varepsilon where \varepsilon are iid N(0,\sigma^2)
```

Model #2

rbmi <- 1/bmi (Reciprocal of bmi.)</pre>

```
rbmi = \gamma_0 + \gamma_1 age + \gamma_2 cigsperday + \gamma_3 dailyenergy + \eta \quad where \quad \eta \text{ are iid } N(0, \omega^2)
```

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Name:	ID#			
PROBLEM SET #1 STATISTICS 500 FALL 2011: ANSWER PAGE 1				
This is an exam. Do not discuss it with	This is an exam. Do not discuss it with anyone. Due 25 October 2011 at noon.			
1. Look at the data.	Fill in or CIRCLE the correct answer			
1.a What is the smallest bmi in the data?				
What is the age of the person with the	bmi = age =			
lowest bmi? How many cigarettes per day				
does this person smoke?	cigsperday =			
1.b What is the largest bmi in the data?				
What is the age of the person with the	bmi = age =			
largest bmi? How many cigarettes per day				
does this person smoke?	cigsperday =			
1.c What is the median number of				
cigarettes smoked per day?	Median =			
2 Fit model 1 on the data page and use it				
to answer the following questions. For the	Fill in or CIRCLE the correct answer			
questions in part 2, assume model 1 is true.				
2.a Give the point estimate and 95% two-				
sided confidence interval for β_1 , the	$Estimate = _ CI = [,]$			
coefficient of age.				
2.b Test the hypothesis that the coefficient				
of cigsperday is zero, H_0 : $\beta_2 = 0$, against a	Name: Value:			
two-sided alternative hypothesis. What is				
the name of the test statistic? What is the	p-value:			
value of the test statistic? What is the p-	-			
value? Is the null hypothesis plausible?	Circle one: Plausible Not plausible			
	-			
2.c Greater daily energy expenditure is				
associated with a larger bmi.	TRUE FALSE			
2.d Smoking more cigarettes is associated				
with a larger bmi.	TRUE FALSE			
2.e The model has fitted about 53.75% of				
the variation in bmi as measured by the F	TRUE FALSE			
statistic.				
2.f A person who smokes 1 more cigarette				
is estimated to have a bmi that is 2% lower.	TRUE FALSE			
2.g What is the numerical value of the				
largest residual in the data?	Value:			
2.h. What is the estimate of σ ? Give the				
numerical value.	Value:			

Name:	
-------	--

_____ ID# _____

PROBLEM SET #1 STATISTICS 500 FALL 2011: ANSWER PAGE 2 This is an exam. Do not discuss it with anyone. Due 25 October 2011 at noon.

3. Fit model 1 on the data page and use it		
to answer the following questions. The		
questions in part 3 ask whether model 1 is a	Fill in or CIRC	LE the correct answer
reasonable model for these data.		
3a. Based on a boxplot of residuals, very		
large negative residuals occur more often	TRUE	FALSE
than very large positive residuals.		
3b. Because the normal plot exhibits an		
inverted S-shaped curve, the residuals	TRUE	FALSE
appear to be skewed to the left rather than		
Normal.		
3c. Because the plot of residuals against		
fitted values exhibits an inverted U shape,	TRUE	FALSE
it is clear that the relationship is nonlinear.		
3d. In the plot of residuals against fitted		
values, there is one extremely large fitted	TRUE	FALSE
bmi far away from other points for a very		
old person who smokes 10 cigerattes per		
day and who has daily energy $= 3.1$.		

4. Fit model 2 on the data page and use it	
to answer the following questions.	Fill in or CIRCLE the correct answer
4a. The Normal quantile plot of the	
residuals from model 2 looks straighter	TRUE FALSE
than the Normal quantile plot of residuals	
from model 1.	
4b. In model 2, test the hypothesis that the	
coefficients of age and cigarettes per day	Name: Value:
are simultaneously both zero, H_0 : $\gamma_1 = \gamma_2 = 0$.	
What is the name of the test statistic?	p-value: DF:
What is the numerical value of the test	
statistic. What are its degrees of freedom	Circle one: Plausible Not plausible
(DF)? What is the p-value? Is the null	
hypothesis plausible?	
4c. Consider age = 25 , dailyenergy = 1 for	Estimate and interval for
a nonsmoker, cigsperday $= 0$. Give the	$\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$
point estimate and 95% two-sided	
confidence interval for $\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$	Estimate: CI:
assuming model 2 is true. Then take	Take reciprocals of the estimate and CI
reciprocals to express this in terms of bmi.	_
	1/ Estimate = 1/CI=[,]

Answers
PROBLEM SET #1 STATISTICS 500 FALL 2011: ANSWER PAGE 1
This is an exam. Do not discuss it with anyone.

This is an exam. Do not discuss it with anyone.			
2. Look at the data.	Fill in or CIRCLE the correct answer		
1.a What is the smallest bmi in the data?			
What is the age of the person with the	bmi = 13.6 age = 23		
lowest bmi? How many cigarettes per day			
does this person smoke?	cigsperday = 0		
1.b What is the largest bmi in the data?			
What is the age of the person with the	bmi = 82.5 age = 40		
largest bmi? How many cigarettes per day			
does this person smoke?	cigsperday = 0		
1.c What is the median number of			
cigarettes smoked per day?	Median $= 0$		
2 Fit model 1 on the data page and use it			
to answer the following questions. For the	Fill in or CIRCLE the correct answer		
questions in part 2, assume model 1 is true.			
2.a Give the point estimate and 95% two-			
sided confidence interval for β_1 , the	Estimate= 0.0205 CI = [0.0138, 0.0272]		
coefficient of age.			
2.b Test the hypothesis that the coefficient			
of cigsperday is zero, H_0 : $\beta_2 = 0$, against a	Name: t-test Value: -2.98		
two-sided alternative hypothesis. What is	Name. t-test value2.96		
the name of the test statistic? What is the	p-value: 0.00287		
value of the test statistic? What is the p-	p-value. 0.00287		
value? Is the null hypothesis plausible?	Circle one: Plausible Not plausible		
value? Is the null hypothesis plausible?	Chere one. Tradslote Not pladslote		
2.c Greater daily energy expenditure is			
associated with a larger bmi.	TRUE		
associated with a larger bill.			
2.d Smoking more cigarettes is associated			
with a larger bmi.	TRUE FALSE		
	IRCE TALSE		
2.e The model has fitted about 53.75% of			
the variation in bmi as measured by the F	TRUE FALSE		
statistic.	Not what F is. Use R ² .		
2.f A person who smokes 1 more cigarette	Not what 1 15. USU K 2.		
is estimated to have a bmi that is 2% lower.	TRUE FALSE		
is contracte to have a offit that is 270 fower.			
2 g What is the numerical value of the	Units of BMI, not percent.		
2.g What is the numerical value of the largest residual in the data?	Value: 56.153		
	value. 30.133		
2.h. What is the estimate of σ ? Give the			
numerical value.	Value: 5.219		
	vulue. 5.217		

Answers
PROBLEM SET #1 STATISTICS 500 FALL 2011: ANSWER PAGE 2
This is an exam. Do not discuss it with anyone.

This is an exam. Do not discuss it with anyone.			
3. Fit model 1 on the data page and use it			
to answer the following questions. The			
questions in part 3 ask whether model 1 is a	Fill in or CIRCLE the correct answer		
reasonable model for these data.			
3a. Based on a boxplot of residuals, very			
large negative residuals occur more often	TRUE (FALSE)		
than very large positive residuals.	Large positive residuals are common (large bmi).		
3b. Because the normal plot exhibits an			
inverted S-shaped curve, the residuals	TRUE FALSE		
appear to be skewed to the left rather than	The curve is not inverted S-shaped, and the		
Normal.	residuals are skewed right, not left. Not Normal.		
3c. Because the plot of residuals against			
fitted values exhibits an inverted U shape,	TRUE (FALSE)		
it is clear that the relationship is nonlinear.	Not U-shaped.		
3d. In the plot of residuals against fitted			
values, there is one extremely large fitted	TRUE 🤇 FALSE 🔎		
bmi far away from other points for a very			
old person who smokes 10 cigerattes per	Actually, there is a very low fitted bmi		
day and who has daily energy = 3.1 .			
4. Fit model 2 on the data page and use it			
in the model to on the data page and abe it			
to answer the following questions.	Fill in or CIRCLE the correct answer		
to answer the following questions.	Fill in or CIRCLE the correct answer		
to answer the following questions.4a. The Normal quantile plot of the	Fill in or CIRCLE the correct answer TRUE FALSE		
to answer the following questions.4a. The Normal quantile plot of the residuals from model 2 looks straighter			
to answer the following questions.4a. The Normal quantile plot of the			
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 	TRUE FALSE		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the 	TRUE FALSE		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day 	TRUE FALSE Much, much straighter, but still not quite Normal.		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the 	TRUE FALSE Much, much straighter, but still not quite Normal.		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue:40.111		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. What is the name of the test statistic? What is the numerical value of the test 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028		
to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, $H_0: \gamma_1 = \gamma_2 = 0$. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 4c. Consider age = 25, dailyenergy =1 for	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028Circle one: PlausibleNot plausibleEstimate and interval for		
 to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H₀: γ₁=γ₂=0. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: $2.2 \ge 10^{-16}$ DF: $2 & 8028$ Circle one: PlausibleNot plausible		
to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, $H_0: \gamma_1=\gamma_2=0$. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 4c. Consider age = 25, dailyenergy =1 for a nonsmoker, cigsperday = 0. Give the point estimate and 95% two-sided	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028Circle one: PlausibleNot plausibleEstimate and interval for $\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$		
to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, H ₀ : $\gamma_1=\gamma_2=0$. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 4c. Consider age = 25, dailyenergy =1 for a nonsmoker, cigsperday = 0. Give the point estimate and 95% two-sided confidence interval for $\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028Circle one: PlausibleNot plausibleEstimate and interval for $\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$ Estimate: 0.0400CI: [0.0398, 0.0403]		
to answer the following questions. 4a. The Normal quantile plot of the residuals from model 2 looks straighter than the Normal quantile plot of residuals from model 1. 4b. In model 2, test the hypothesis that the coefficients of age and cigarettes per day are simultaneously both zero, $H_0: \gamma_1=\gamma_2=0$. What is the name of the test statistic? What is the numerical value of the test statistic. What are its degrees of freedom (DF)? What is the p-value? Is the null hypothesis plausible? (10 points) 4c. Consider age = 25, dailyenergy =1 for a nonsmoker, cigsperday = 0. Give the point estimate and 95% two-sided	TRUEFALSEMuch, much straighter, but still not quite Normal.Name: F-testValue: 40.111p-value: 2.2 x 10 ⁻¹⁶ DF: 2 & 8028Circle one: PlausibleNot plausibleEstimate and interval for $\gamma_0 + \gamma_1 25 + \gamma_2 0 + \gamma_3 1$		

```
Problem 1, Fall 2011, Statistics 500
                Doing the Problem Set in R
> attach(uscanada)
Question 1.
> which.min(bmi)
[1] 1612
> uscanada[1612,]
    age cigsperday dailyenergy bmi height weight
1701 23 0 0.8 13.6 1.803 44.1
> which.max(bmi)
[1] 6316
> uscanada[6316,]
   age cigsperday dailyenergy bmi height weight
6812 40
                0 1 82.5 1.651 225
> summary(cigsperday)
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
  0.000 0.000 0.000 3.127 0.000 60.000
Question 2.
> mod<-lm(bmi~age+cigsperday+dailyenergy)</pre>
> mod
Coefficients:
  ntercept) age
25.77529 <u>0.02049</u>
                age cigsperday dailyenergy
(Intercept)
                        -0.02228 -0.24727
> confint(mod)
                2.5 %
                          97.5 %
(Intercept) 25.39913509 26.151436946
          0.01382004 0.027152447
aqe
cigsperday -0.03692123 -0.007632065
dailyenergy -0.29741617 -0.197127872
> summary(mod)
Residuals:
   Min
          1Q Median
                         3Q
                               Max
-13.096 -3.511 -0.778 2.582 56.153
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 25.775286 0.191888 134.324 < 2e-16 ***
age 0.020486 0.003401 6.024 1.77e-09 ***
cigsperday -0.022277 0.007471 -2.982 0.00287 **
dailyenergy -0.247272 0.025580 -9.666 < 2e-16 ***
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 5.219 on 8028 degrees of freedom
Multiple R-squared: 0.01969, Adjusted R-squared: 0.01932
```

F-statistic: 53.75 on 3 and 8028 DF, p-value: < 2.2e-16

```
Problem 1, Fall 2011, Statistics 500, continued
Question 3.
> res<-mod$residual</pre>
> boxplot(res)
> qqnorm(res)
> qqline(res)
> shapiro.test(sample(res,5000))
(For some reason, R won't do the test with more than 5000
observations.)
        Shapiro-Wilk normality test
data: sample(res, 5000)
W = 0.9309, p-value < 2.2e-16
> fit<-mod$fitted</pre>
> plot(fit,res)
> lines(lowess(fit,res),col="red")
Question 4.
> rbmi<-1/bmi</pre>
> cbind(bmi,rbmi)[1:4,]
      bmi
                rbmi
[1,] 21.1 0.04739336
[2,] 22.4 0.04464286
[3,] 20.4 0.04901961
[4,] 28.4 0.03521127
> modfull<-lm(rbmi~age+cigsperday+dailyenergy)</pre>
> gqnorm(modfull$residual)
> modreduced<-lm(rbmi~dailyenergy)</pre>
> anova(modreduced,modfull)
Analysis of Variance Table
Model 1: rbmi ~ dailyenergy
Model 2: rbmi ~ age + cigsperday + dailyenergy
           RSS Df Sum of Sq
 Res.Df
                                  F
                                        Pr(>F)
  8030 0.41101
1
2 8028 0.40694 2 0.0040665 40.111 < 2.2e-16 ***
> predict(modfull,data.frame(age=25,cigsperday=0,dailyenergy=1),
interval="confidence")
         fit
                    lwr
                               upr
1 0.04005285 0.03976237 0.04034334
> 1/predict(modfull,data.frame(age=25,cigsperday=0,dailyenergy=1),
interval="confidence")
       fit
               lwr
                         upr
1 24.96701 25.14941 24.78724
```

PROBLEM SET #2 STATISTICS 500 FALL 2011: DATA PAGE 1

This is an exam. Do not discuss it with anyone.

As in problem 1, the data are from the Joint Canada/United States Survey of Health, which was a version of the National Health Interview Survey given to both Canadians and people in the US. The data came from

http://www.cdc.gov/nchs/nhis/jcush.htm , but there is no need for you to go to that web page unless you want to.

If you are using R, the data are available on my webpage, <u>http://www-</u><u>stat.wharton.upenn.edu/~rosenbap/index.html</u> in the object uscanada. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather than using the file already on your computer. In Firefox, you might have to clear recent history. If you cannot find the uscanada object when you download the new R workspace, you probably have not downloaded the new file and are still working with the old one.

If you are not using R, the data are available in a .csv file uscanada.csv at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ A csv file should open in excel, so you can copy and paste it, and many programs can read csv files. The list of files here is case sensitive, upper case separate from lower case, so uscanada.csv is with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files

The variables are listed below. The newnames refer to the original CDC names (age is short for DJH1GAGE). In particular, PAJ1DEXP or dailyenergy is a measure of the average daily energy expended during leisure time activities by the respondent in the past three months, and it summarizes many questions about specific activities. The body mass index is a measure of obesity <u>http://www.nhlbisupport.com/bmi/</u>.

> us	scanadaLabels		
	newname	name	label
2	country	SPJ1_TYP	Sample type
11	age	DHJ1GAGE	Age – (G)
12	female	DHJ1_SEX	Sex
68	cigsperday	SMJ1_6	<pre># cigarettes per day (daily smoker)</pre>
88	bmi	HWJ1DBMI	Body Mass Index - (D)
89	weight	HWJ1DWTK	Weight - kilograms (D)
91	height	HWJ1DHTM	Height - metres - (D)
93	hasdoc	HCJ1_1AA	Has regular medical doctor
342	dailyenergy	PAJ1DEXP	Energy expenditure - (D)
343	minutes15	PAJ1DDFR	Partic. in daily phys. act. >15 min.
347	PhysAct	PAJ1DIND	Physical activity index - (D)
353	educ	SDJ1GHED	Highest level/post-sec. educ. att. (G)

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Statistics 500 Bulk Pack - 230 -

PROBLEM SET #2 STATISTICS 500 FALL 2011: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due in class Tuesday 22 November 2011 at noon.

Model #1

bmi = $\beta_0 + \beta_1 age + \beta_2 cigsperday + \beta_3 dailyenergy + \varepsilon$ where ε are iid N(0, σ^2) Model #2

rbmi <- 1/bmi (Reciprocal of bmi.)</pre>

rbmi = $\gamma_0 + \gamma_1 age + \gamma_2$ cigsperday + γ_3 dailyenergy + η where η are iid N(0, ω^2) **Remark #1**: In the first problem set, you fit models 1 and 2 and discovered that rbmi = 1/bmi in model #2 had residuals whose Normal plot looked much straighter (hence less wildly non-Normal) than the residuals from model #1 using bmi. However, the reciprocal of bmi seems hard to interpret. The NHLBI recommends a bmi between 18.5 and 24.9, and the midpoint of that range is about 22. So let us call 22 the "recommended bmi". Consider the variable fr = (22-bmi)/bmi.

Model #3

> fr <-(22-bmi)/bmi

 $fr = \lambda_0 + \lambda_1 age + \lambda_2 cigsperday + \lambda_3 dailyenergy + \iota$ where ι are iid $N(0,\delta^2)$ Plot fr versus rbmi. Calculate the residuals from models 2 and 3 and plot them against each other. Do not turn in the plots – just look at them as an aid to answering the questions. Question 1.6 asks for the **best interpretation** of fr from the list below

A. If your fr is 0.20, your bmi is 20% higher than the recommended bmi of 22.

B. If your fr is -0.20, your bmi is 20% higher than the recommended bmi of 22.

C. If your fr is 0.20, your weight must fall by 20% to reach the recommended bmi of 22.

D. If your fr is -0.20, your weight must fall by 20% to reach the recommended bmi of 22.

Model #4 Fit model 4 below, and look at the Normal plot of the residuals, plot residuals vs fitted with a lowess curve in col= "red". Do not turn in plots – look at them.

fr = $\theta_0 + \theta_1 age + \theta_2$ female + θ_3 hasdoc + θ_4 dailyenergy+ θ_5 country + ξ where ξ are iid N($0, \Delta^2$)

Question 2 asks what model 4 predicts for two people who are "otherwise the same," so

for example, a male and a female who are otherwise the same have the same age, both have or both do not have a regular doctor, same daily energy expenditure and live the in the same country. "Otherwise the same" means the same in terms of x's in the model except those specifically mentioned.

Model #5 Fit model 5 below and plot its fitted values (y) against age (x).

Define centered age as $age2 = (age-mean(age))^2$. Plot age2 versus age.

fr = $\kappa_0 + \kappa_1 age + \kappa_2$ female + κ_3 hasdoc + κ_4 dailyenergy + κ_5 country + κ_6 age 2 + ζ where ζ are iid N(0, φ^2)

Name:	
	00 FALL 2011: ANSWER PAGE 1
	anyone. Due 22 November 2011 at noon. Fill in the correct answer
1. Read Remark 1 on the data page. 1.1What is the correlation between 1/bmi	Fill lif the correct allswei
and $fr = (22-bmi)/bmi$. Give the numerical	
value of the ususal (i.e. Pearson)	Correlation =
correlation.	
1.2 What is the correlation between the	
residuals of models 2 and 3 on the data	Correlation =
page? Give the numerical value.	
1.3 For the four bmi's listed, give the	
numerical values of $fr = (22-bmi)/bmi$.	bmi 20 30 35 44
Two digits beyond the decimal are	
sufficient, so .333333 is ok as .33.	fr
1.4 To achieve the recommended bmi of	
22, what percentage (0-100%) would a	
person with a bmi of 44 have to lose? Give	%
one number between 0 and 100%.	
1.5 If X is a random variable with finite	
nonzero variance and a and b are two	Correlation =
constants with b>0, what is the correlation	
between X and a+bX? Give a number. If	a =
you don't know the number, run an	
experiment. Write fr as a+bX where	b =
X=1/bmi by giving the value of a and b that	
make this true.	
1.6 Using the list of best interpretations of	0
fr on the data page, select the one best	One letter:
interpretation. Give one letter A-D.	
2. Fit model #4 on the data page and use it	
for the following questions. Read about	Circle the correct answer
"otherwise the same" on the data page	Chefe the confect answer
2.1 For a male and female who are	
otherwise the same, model 4 predicts the	TRUE FALSE
female needs to lose a larger fraction of her	
weight to achieve a bmi of 22.	
2.2 For a person aged 70 and another aged	
25 who are otherwise the same, the model	
predicts the 25-year old needs to lose a	TRUE FALSE
larger fraction of his/her weight to achieve	
the recommended bmi of 22.	
2.3 The constant term θ_0 in model #4 is the	
fractional weight loss recommended for the	TRUE FALSE
average person in the data set.	

Name: ID#			
PROBLEM SET #2 STATISTICS 500 FALL 2011: ANSWER PAGE 2			
This is an exam. Do not discuss it with anyone. Due 22 November 2011 at noon.			
3. Use models 4 and 5 on the data page to	Fill in or circle the correct answer		
answer the following questions.			
3.1 Use Tukey's 1 degree-of-freedom for			
non-additivity to test the null hypothesis			
that model #4 is correct against the	t-value: p-value:		
alternative hypothesis that some curvature			
is present.			
Give the value of the t-test statistic, the P-	PLAUSIBLE NOT PLAUSIBLE		
value, and state whether the null hypothesis			
is plausible.			
3.2 What is the numerical value of the	2		
correlation between age and age ² ? What is	With age ² :		
the numerical value of the correlation			
between age and centered age ² , namely	With age2:		
$age2 = (age-mean(age))^2$.			
3.3 Fit model 5 and test the null hypothesis	NT		
that the relationship between fr and age is	Name: Value:		
linear as in model 4 versus the alternative			
that it is not linear but rather needs a	P-value:		
quadratic term as in model 5. Give the	PLAUSIBLE NOT PLAUSIBLE		
name and value of the test statistic, the P-	PLAUSIBLE NOT PLAUSIBLE		
value, and state whether the null hypothesis is plausible.			
3.4 If the point estimate of κ_6 , the			
coefficient of age2, were actually the true			
	TRUE FALSE		
value of κ_6 , then the model would predict that a 20 year old and an 80 old would both	INCL IMESE		
need to lose more weight than a 55 year old			
who is otherwise the same to reach the			
recommended bmi of 22.			
3.5 In model 5, which individual has the			
largest absolute studentized residual	Which row? Value:		
(rstudent())? Give the row number. What	value		
is the numerical value of the studentized	TRUE FALSE		
residual? Is it true that this individual has a	IROL IMESE		
bmi of 82.5?			
3.6 Test at the 0.05 level the null			
hypothesis that model 5 has no outliers.	Value: DF:		
What is the value of statistic? What are the	·		
degrees of freedom (DF)? Does the test	Circle one		
reject the null hypothesis of no outlier,	Rejects Does not reject		
thereby finding at least one outlier?	Finds outlier Not an outlier		

PROBLEM SET #2 STATISTICS 500 FALL 2011: ANSWER PAGE 1, Answers
This is an exam. Do not discuss it with anyone. Due 22 November 2011 at noon.

	Eill in the compateneous (7 points each)					
2. Read Remark 1 on the data page.	Fill in the correct answer (7 points each)					
1.1 What is the correlation between 1/bmi						
and $fr = (22-bmi)/bmi$. Give the numerical						
value of the ususal (i.e. Pearson)	Correlation = 1					
correlation.						
1.2 What is the correlation between the						
residuals of models 2 and 3 on the data	Correlation = 1					
page? Give the numerical value.						
1.3 For the four bmi's listed, give the						
numerical values of $fr = (22-bmi)/bmi$.	bmi 20 30 35 44					
Two digits beyond the decimal are						
sufficient, so .333333 is ok as .33.	fr 0.1 -0.27 -0.37 -0.50					
1.4 To achieve the recommended bmi of						
22, what percentage (0-100%) would a						
person with a bmi of 44 have to lose? Give	50 %					
one number between 0 and 100%.						
1.5 If X is a random variable with finite						
nonzero variance and a and b are two	Correlation $= 1$					
constants with b>0, what is the correlation						
between X and a+bX? Give a number. If	a = -1					
you don't know the number, run an						
experiment. Write fr as a+bX where	b = 22					
X=1/bmi by giving the value of a and b that						
make this true.						
1.6 Using the list of best interpretations of	One letter: D					
fr on the data page, select the one best	(22-27.5)/27.5 = -0.2					
interpretation. Give one letter A-D.	27.5*(12) = 22					
2. Fit model #4 on the data page and use it						
for the following questions. Read about	Circle the correct answer					
"otherwise the same" on the data page	5 points each					
2.1 For a male and female who are						
otherwise the same, model 4 predicts the	TRUE FALSE					
female needs to lose a larger fraction of her						
weight to achieve a bmi of 22.						
2.2 For a person aged 70 and another aged						
25 who are otherwise the same, the model						
predicts the 25-year old needs to lose a	TRUE FALSE					
larger fraction of his/her weight to achieve						
the recommended bmi of 22.						
2.3 The constant term θ_0 in model #4 is the	TRUE					
fractional weight loss recommended for the	A person has predicted value θ_0 if all of					
average person in the data set.	their x's were 0, which often makes no					
	sense.					

PROBLEM SET #2 STATISTICS 500 FALL 2011: ANSWER PAGE 2, Answers This is an exam. Do not discuss it with anyone. Due 22 November 2011 at noon.

This is an exam. Do not discuss it with a	anyone. Due 22 November 2011 at noon.
3. Use models 4 and 5 on the data page to	Fill in or circle the correct answer
answer the following questions.	7 points each
3.1 Use Tukey's 1 degree-of-freedom for	
non-additivity to test the null hypothesis	
that model #4 is correct against the	t-value: -5.27 p-value: 1.4 x 10 ⁻⁷
alternative hypothesis that some curvature	1
is present.	
Give the value of the t-test statistic, the P-	PLAUSIBLE NOT PLAUSIBLE
value, and state whether the null hypothesis	
is plausible.	
3.2 What is the numerical value of the	
correlation between age and age ² ? What is	With age^2 : 0.984
the numerical value of the correlation	
between age and centered age ² , namely	With age2: 0.255
$age2 = (age-mean(age))^2$.	
3.3 Fit model 5 and test the null hypothesis	
that the relationship between fr and age is	Name: t-test Value: 14.33
linear as in model 4 versus the alternative	F-test ok, $F = t^2$ with 1 df in numerator.
that it is not linear but rather needs a	P-value: 10^{-16}
quadratic term as in model 5. Give the	
name and value of the test statistic, the P-	PLAUSIBLE NOT PLAUSIBLE
value, and state whether the null hypothesis	
is plausible.	
3.4 If the point estimate of κ_6 , the	
coefficient of age2, were actually the true	
value of κ_6 , then the model would predict	TRUE FALSE
that a 20 year old and an 80 old would both	
need to lose more weight than a 55 year old	
who is otherwise the same to reach the	
recommended bmi of 22.	
3.5 In model 5, which individual has the	
largest absolute studentized residual	Which row? 1612 Value: 4.38
(rstudent())? Give the row number. What	
is the numerical value of the studentized	TRUE
residual? Is it true that this individual has a	
bmi of 82.5?	
3.6 Test at the 0.05 level the null	
hypothesis that model 5 has no outliers.	Value: 4.38 DF: 8024
What is the value of statistic? What are the	1 df lost for outlier dummy variable.
degrees of freedom (DF)? Does the test	Circle one
reject the null hypothesis of no outlier,	Rejects Does not reject
thereby finding at least one outlier?	
	Finds outlier \Not an outlier \

```
Problem Set 2, Fall 2011, Statistics 500
```

Doing the Problem Set in R

```
Question 1.
> fr<-(22-bmi)/bmi
> cor(1/bmi,fr)
[1] 1
> rbmi<-1/bmi</pre>
> mod2<-lm(rbmi~cigsperday+age+dailyenergy)</pre>
> mod3<-lm(fr~cigsperday+age+dailyenergy)</pre>
> cor(mod2$resid,mod3$resid)
[1] 1
> bmilist
[1] 20 30 35 44
> bmilist[1]<-22</pre>
> (22-bmilist)/bmilist
[1] 0.0000000 -0.2666667 -0.3714286 -0.5000000
> round((22-bmilist)/bmilist,2)
[1] 0.00 -0.27 -0.37 -0.50
```

Question 2.

```
___
```

Question 3.

```
> summary(lm(fr ~ age + female + hasdoc + dailyenergy +
country+tukey1df(mod4)))
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.1340317	0.0066228	-20.238	< 2e-16 ***
age	-0.0007641	0.0001025	-7.452	1.02e-13 ***
female	0.0617226	0.0034862	17.705	< 2e-16 ***
hasdocNo regular doc	0.0216226	0.0046989	4.602	4.26e-06 ***
dailyenergy	0.0056699	0.0008027	7.063	1.76e-12 ***
countryUS	-0.0254848	0.0034923	-7.297	3.21e-13 ***
tukey1df(mod4)	-1.2319893	0.2338398	-5.269	1.41e-07 ***
> age2<-(age-mean(age	e))^2			
Problem Set	2, Fall 20	011, Statist	cics 500	, continued.
<pre>> plot(age,age2)</pre>				
<pre>> cor(age,age2)</pre>				
[1] 0.2550511				
<pre>> cor(age,age^2)</pre>				
• · • • • • • • • • • • •				

```
[1] 0.9843236
```

```
> mod5<-lm(fr~age+female+hasdoc+dailyenergy+country+age2)</pre>
> summary(mod5)
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
                     -1.304e-01 6.489e-03 -20.091 < 2e-16 ***
(Intercept)
age
                     -1.160e-03 1.052e-04 -11.028 < 2e-16 ***
female
                     5.760e-02 3.449e-03 16.700 < 2e-16 ***
hasdocNo regular doc 1.783e-02 4.656e-03 3.829 0.000129 ***
                     6.649e-03 7.488e-04 8.880 < 2e-16 ***
dailyenergy
                    -2.501e-02 3.454e-03 -7.241 4.87e-13 ***
countryUS
age2
                      7.704e-05 5.374e-06 14.335 < 2e-16 ***
_ _ _
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.1515 on 8025 degrees of freedom
Multiple R-squared: 0.08394, Adjusted R-squared: 0.08326
F-statistic: 122.6 on 6 and 8025 DF, p-value: < 2.2e-16
> plot(age,mod5$fit)
> which.max(abs(rstudent(mod5)))
1612
> length(age)
[1] 8032
> indiv1612<-rep(0,8032)</pre>
> indiv1612[1612]<-1</pre>
> 44.1*2.2
[1] 97.02
> 1.803*39
[1] 70.317
> summary(lm(fr~age+female+hasdoc+dailyenergy+country+age2+indiv1612))
                       Estimate Std. Error t value Pr(>|t|)
                     -1.310e-01 6.483e-03 -20.202 < 2e-16 ***
-1.150e-03 1.051e-04 -10.941 < 2e-16 ***
(Intercept)
aqe
female
                      5.748e-02 3.445e-03 16.682 < 2e-16 ***
hasdocNo regular doc 1.801e-02 4.651e-03 3.872 0.000109 ***
                     6.678e-03 7.480e-04 8.929 < 2e-16 ***
dailyenergy
                     -2.482e-02 3.451e-03 -7.191 6.99e-13 ***
countryUS
                      7.666e-05 5.369e-06 14.278 < 2e-16 ***
age2
                      6.633e-01 1.514e-01 4.382 1.19e-05 ***
indiv1612
> 0.05/8032
[1] 6.2251e-06
> qt(1-0.025/8032,8024)
[1] 4.521613
> max(abs(rstudent(mod5)))
[1] 4.381769
```

PROBLEM SET #3 STATISTICS 500 FALL 2011: DATA PAGE 1 Due Thursday 15 December 2011 at noon. This is an exam. Do not discuss it with anyone.

Two data sets are used. The first is the same as in problems 1 and 2, the Joint Canada/United States Survey of Health. The second data set is from Allison, Truett and Cicchetti, Domenic V. (1976), Sleep in Mammals: Ecological and Constitutional Correlates, *Science*, 194: 732-734. The paper is available from JSTOR on the library web page, but there is no need to read it unless you are interested in doing so.

If you are using R, the data are available on my webpage, <u>http://www-</u><u>stat.wharton.upenn.edu/~rosenbap/index.html</u> in the objects uscanada and sleepST500. You will need to download the workspace again. You *may* need to clear your web browser's cache, so that it gets the new file, rather than using the file already on your computer. If you cannot find the sleepST500, then you probably have not downloaded the new file and are still working with the old one.

If you are not using R, the data are available in a .csv files uscanada.csv and sleepST500.csv at <u>http://stat.wharton.upenn.edu/statweb/course/Fall-</u>2008/stat500/ A csv file should open in excel, so you can copy and paste it, and many programs can read csv files. Please note that there are several files with similar names, so make sure you have the correct files. The list of files here is case sensitive, upper case separate from lower case, so uscanada.csv and sleepST500.csv are with the lower case files further down. If you cannot find the file, make sure you are looking at the lower case files.

In sleepST500, look at two variables, $y_{ij} = totalsleep$, which is total hours per day of sleep, and sleepdanger, which forms three groups of 16 mammals each based on the danger they face when asleep. The bat and the jaguar are in the group in least danger when asleep, while the guinea pig is in most danger. Before doing anything else, you should plot the data, boxplot(totalsleep~ sleepdanger). The model for the sleep data, **Model 1**, is

 $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$ where ϵ_{ij} are iid N(0, σ^2), i=1,2,3, j=1,2,...,16, $\alpha_1 + \alpha_2 + \alpha_3 = 0$ where i=1 for least, i=2 for middle, i=3 for most danger. The overall null hypothesis, H₀: $\alpha_1 = \alpha_2 = \alpha_3 = 0$, has three subhypotheses, H₁₂: $\alpha_1 = \alpha_2$, H₁₃: $\alpha_1 = \alpha_3$, and H₂₃: $\alpha_2 = \alpha_3$, and you should refer to these hypothesis as H₁₂, etc. on the answer page.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

PROBLEM SET #3 STATISTICS 500 FALL 2011: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due Thursday 15 December 2011 at noon.

The variables for the US-Canada data are listed below. The newnames refer to the original CDC names (age is short for DJH1GAGE). In particular, PAJ1DEXP or dailyenergy is a measure of the average daily energy expended during leisure time activities by the respondent in the past three months, and it summarizes many questions about specific activities. The body mass index is a measure of obesity http://www.nhlbisupport.com/bmi/.

> u	scanadaLabels	•	
	newname	name	lab
2	country	SPJ1_TYP	Sample typ
11	age	DHJ1GAGE	Age - (G
12	female	DHJ1_SEX	Se
68	cigsperday	SMJ1_6	<pre># cigarettes per day (daily smoker</pre>
88	bmi	HWJ1DBMI	Body Mass Index - (D
89	weight	HWJ1DWTK	Weight - kilograms (D)
91	height	HWJ1DHTM	Height - metres - (D
93	hasdoc	HCJ1_1AA	Has regular medical doctor
342	dailyenergy	PAJ1DEXP	Energy expenditure - (D)
343	minutes15	PAJ1DDFR	Partic. in daily phys. act. >15 min.
347	PhysAct	PAJ1DIND	Physical activity index - (D
353	educ	SDJ1GHED	Highest level/post-sec. educ. att. (G)

Model #2

> fr <-(22-bmi)/bmi

 $fr = \gamma_0 + \gamma_1 age + \gamma_2 female + \gamma_3 cigsperday + \gamma_4 daily$ $energy + \eta$ where η are iid $N(0,\omega^2)$

The problem will ask you to consider all submodels of model 2, including model 2 itself, the model with fr = γ_0 with no predictors, and all the models that use a subset of the variables age, female, cigsperday and dailyenergy.

There are three options about **turning in the exam**. (i) You can deliver it to my office 473 JMHH on Thursday 15 December at noon. Any time before noon on 15 December, you can (ii) place it in a sealed envelope addressed to me and leave it in my mail box in the statistics department, 4th floor JMHH, or (iii) you can leave it with Adam at the front desk in the statistics department. **Make and keep a photocopy of your answer page** – if something goes wrong, I can grade the photocopy. The statistics department is locked at night and on the weekend. Your **course grade** will be available from the registrar shortly after I grade the finals. I will put the **answer key** in an updated version of the bulkpack on my web page shortly after I grade the final. I no longer distribute course materials by US or campus mail.

Last name: First name:	ID#						
PROBLEM SET #3 STATISTICS 5	00 FALL 2011: ANSWER PAGE 1						
This is an exam. Do not discuss it with anyone. Due 15 December 2011 at noon.							
1 Use the USCanada data and model 2 on							
the data page to answer the following	Fill in or Circle the Correct Answer						
questions. Assume model 2 is true.							
1.1 How many submodels does model 2							
have? Include model 2 itself and the empty	How many:						
model in your count.							
1.2 Of the submodels of model 2, which	List variables:						
one model is estimated to have the smallest							
expected total squared error of prediction							
as judged by C_P ? List the names of the							
variables in this model, the value of C_P , and	C _P = size =						
the size of the model.	List variables:						
1.3 Of the submodels of model 2, use C_P to identify all the models whose C_P value	List variables:						
estimates that the model contains all							
variables with nonzero coefficients. Of							
these models, pick the one model with the	$C_P = _$ size =						
smallest size. List the names of the							
variables in this model, the value of C_P , and							
the size of the model.							
1.4 Give the values of PRESS for model 2							
and for the submodel with exactly one	PRESS for Model 2:						
predictor namely age.							
	PRESS with Age alone:						
2 Use the USCanada data and model 2 on							
the data page to answer the following	Fill in or Circle the Correct Answer						
questions.							
2.1 In model 2, how many observational	н						
have large hatvalues h_i (or leverages) by	How many?						
the standard we discussed in class? Give							
one number.	Circle one						
2.2 The one person with the largest	Circle one:						
hatvalue is a 21-year old female nonsmoker	TRUE FALSE						
with an unusually high value for dailyenergy. Give the largest hat value.	Largest hatvalue —						
2.3 The person with the largest absolute	Largest hatvalue = Circle one:						
dffits, dffits , shifts his/her own fitted value	TRUE FALSE						
by more than half of its standard error.	INOL PALSE						
What is the signed value of dffits for the	Value of dffits =						
person with the largest dffits ?							

Last name: First name:	ID#						
PROBLEM SET #3 STATISTICS 5	00 FALL 2011: ANSWER PAGE 2						
This is an exam. Do not discuss it with anyone. Due 15 December 2011 at noon.							
3. Use sleepST500 for question 3. Assume							
the model for the sleep data, model 1, on	Fill in or circle the correct answer.						
the data page is true in question 3 and use it							
in answering the following questions.							
3.1 Test the null hypothesis that H_0 :	No. Volue						
$\alpha_1 = \alpha_2 = \alpha_3 = 0$. What is the name of the test statistic? What is the value of the test	Name: Value:						
statistic? What is the value of the test statistic? What are the degrees of freedom?	DF:, P-value:						
What is the p-value? Is the null hypothesis	Circle one:						
plausible?	PLAUSIBLE NOT PLAUSIBLE						
3.2 Use Tukey's method of multiple							
comparisons to create three simultaneous	Middle-Most: [,]						
95% confidence intervals for the							
differences α_i - α_k . Give the numerical	Least-Most: [,]						
values of the endpoints of the confidence							
intervals expressed in hours per day.	Least-Middle: [,]						
Each of the three confidence intervals in							
3.2 covers its parameter α_i - α_k in 95% of	Circle one:						
experiments, but because of the Bonferroni	TRUE FALSE						
inequality, all three confidence intervals cover their respective parameter in only	IKUL FALSE						
1-0.05x3 = 85% of experiments.							
Suppose H_0 : $\alpha_1 = \alpha_2 = \alpha_3 = 0$ is false. Under	If H ₀ : $\alpha_1 = \alpha_2 = \alpha_3 = 0$ is false, then:						
this supposition circle all of the true	If \mathbf{H}_0 . $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{w}_3 = 0$ is funct, then:						
statements, if any. (That is, circle 0, 1, 2,	1) It is possible that H_{12} is true						
3 or 4 statements.) Refer to the data page							
for notation, eg H_{12} .	2) It is possible that H_{12} and H_{13} are						
	both true						
	3) It is possible that H_{12} and H_{13} and H_{13} and						
	H_{23} are all false						
	4) At most one of H_{12} and H_{13} and H_{23}						
	is true.						
Under the model for the sleep data, what is							
the smallest hatvalue (i.e. leverage)? What	Smallest = Largest =						
is the largest hatvalue? Give two numbers.							
How many hatvalues are large as judged by	How many?						
the standard we discussed in class?							
Holm's procedure rejects H_{13} : $\alpha_1 = \alpha_3$ (ie	Circle one:						
least=most) but accepts the two other	TRUE FALSE						
subhypotheses H ₁₂ : $\alpha_1 = \alpha_2$ and H ₂₃ : $\alpha_2 = \alpha_3$							

PROBLEM SET #3 STATISTICS 500 FALL 2011: ANSWERS
This is an exam. Do not discuss it with anyone.

	t discuss it with difyonet
1 Use the USCanada data and model 2 on	
the data page to answer the following	Fill in or Circle the Correct Answer
questions. Assume model 2 is true.	(7 points each)
1.1 How many submodels does model 2	
have? Include model 2 itself and the empty	How many: $2^{4} = 16$
model in your count.	
1.2 Of the submodels of model 2, which	List variables:
one model is estimated to have the smallest	Age, female, cigsperday, dailyenergy
expected total squared error of prediction	rige, temale, ergsperday, dailyenergy
as judged by C_P ? List the names of the	
	$C_P = 5$ size = 5
variables in this model, the value of C_P , and the size of the model	$C_P = 5$ Size = 5
the size of the model.	The second shares
1.3 Of the submodels of model 2, use C_P to	List variables:
identify all the models whose C _P value	Age, female, cigsperday, dailyenergy
estimates that the model contains all	
variables with nonzero coefficients. Of	~
these models, pick the one model with the	$C_P = 5$ size = 5
smallest size. List the names of the	
variables in this model, the value of C _P , and	
the size of the model.	
1.4 Give the values of PRESS for model 2	
and for the submodel with exactly one	PRESS for Model 2: 190.30
predictor namely age.	
	PRESS with Age alone: 198.73
2 Use the USCanada data and model 2 on	
the data page to answer the following	Fill in or Circle the Correct Answer
questions.	(8 points each)
2.1 In model 2, how many observational	
have large hatvalues h _i (or leverages) by	How many? 547
the standard we discussed in class? Give	
one number.	
2.2 The one person with the largest	Circle one:
hatvalue is a 21-year old female nonsmoker	(TRUE) FALSE)
with an unusually high value for	(True and false both accepted – the variable
dailyenergy. Give the largest hat value.	female was not defined on the data page.)
	Largest hatvalue = 0.01958
2.3 The person with the largest absolute	Circle one:
dffits, dffits , shifts his/her own fitted value	TRUE FALSE
by more than half of its standard error.	
What is the signed value of dffits for the	Value of dffits = -0.1609
person with the largest dffits ?	
person with the largest [utilis]?	

PROBLEM SET #3 STATISTICS 500 FALL 2011: ANSWERS
This is an exam. Do not discuss it with anyone.

I his is an exam. Do no	uiscuss it with anyone.
3. Use sleepST500 for question 3. Assume the model for the sleep data, model 1, on the data page is true in question 3 and use it in answering the following questions.	Fill in or circle the correct answer. (8 points each)
3.1 Test the null hypothesis that H ₀ : $\alpha_1 = \alpha_2 = \alpha_3 = 0$. What is the name of the test	Name: F-test Value: 11.78
statistic? What is the value of the test statistic? What are the degrees of freedom? What is the p-value? Is the null hypothesis plausible?	DF: 2, 45 P-value: 7.7 x 10 ⁻⁵ Circle one: PLAUSIBLE NOT PLAUSIBLE
3.2 Use Tukey's method of multiple comparisons to create three simultaneous 95% confidence intervals for the	Middle-Most: [1.364, 7.798]
differences α_i - α_k . Give the numerical values of the endpoints of the confidence	Least-Most: [2.996, 9.429]
intervals expressed in hours per day.	Least-Middle: [-1.586, 4.848]
Each of the three confidence intervals in 3.2 covers its parameter α_{i} - α_{k} in 95% of experiments, but because of the Bonferroni	Circle one:
inequality, all three confidence intervals cover their respective parameter in only 1-0.05x3 = 85% of experiments.	TRUE FALSE
Suppose H ₀ : $\alpha_1 = \alpha_2 = \alpha_3 = 0$ is false. Under this supposition circle all of the true	If $H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$ is false, then:
statements , if any. (That is, circle 0, 1, 2, 3 or 4 statements.) Refer to the data page	$(5) It is possible that H_{12} is true$
for notation, eg H_{12} .	 It is possible that H₁₂ and H₁₃ are both true
	7) It is possible that H_{12} and H_{13} and H_{23} are all false
	8) At most one of H_{12} and H_{13} and H_{23} is true.
Under the model for the sleep data, what is the smallest hatvalue (i.e. leverage)? What is the largest hatvalue? Give two numbers.	Smallest = 0.0625 Largest = 0.0625
How many hatvalues are large as judged by the standard we discussed in class?	How many? 0
Holm's procedure rejects H_{13} : $\alpha_1 = \alpha_3$ (ie least=most) but accepts the two other subhypotheses H_{12} : $\alpha_1 = \alpha_2$ and H_{23} : $\alpha_2 = \alpha_3$	Circle one: TRUE FALSE
	<u>.</u>

Problem 3, Fall 2011: Doing the Problem Set in R Question 1. > attach(uscanada) > y<-(22-bmi)/bmi > library(leaps) > x<-uscanada[,c(2,3,5,9)]</pre> > x[1,] age female cigsperday dailyenergy 1 44 1 0 1.3 > leaps(x=x,y=y,names=colnames(x)) \$which age female cigsperday dailyenergy 1FALSETRUEFALSE1TRUEFALSEFALSE1FALSEFALSEFALSE1FALSEFALSETRUE2FALSETRUEFALSE2TRUETRUEFALSE2FALSETRUETRUE2FALSETRUEFALSE2TRUEFALSETRUE2TRUEFALSEFALSE2TRUEFALSETRUE 1 FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE 2 TRUE FALSE TRUE TRUE TRUE 2 FALSE FALSE FALSE 3 TRUE TRUE TRUE 3 FALSE TRUE TRUE TRUE 3 TRUE TRUE TRUE FALSE 3 TRUE FALSE TRUE TRUE 4 TRUE TRUE TRUE TRUE \$size [1] 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 \$Cp [1] 222.86448 360.45091 373.19887 447.93843 99.87721 114.15371 205.02159 301.70463 355.51457 361.02689 22.59063 75.88034 102.04606 294.07859 5.00000 > fr<-(22-bmi)/bmi > mod2<-lm(fr~age+female+cigsperday+dailyenergy)</pre> > PRESS(mod2) **\$PRESS** [1] 190.2983 > PRESS(lm(fr~age)) \$PRESS [1] 198.7274 Ouestion 2: > boxplot(hatvalues(mod2)) > sum(hatvalues(mod2)>=2*mean(hatvalues(mod2))) [1] 547 > which.max(hatvalues(mod2)) 6743 > uscanada[6743,] country age female cigsperday dailyenergy bmi 7285 US 21 0 0 30.8 23.4

Problem 3, Fall 2011: Doing it in R, continued > summary(hatvalues(mod2)) Min. 1st Qu. Median Mean 3rd Qu. Max. 0.0002423 0.0003537 0.0004649 0.0006225 0.0006564 0.0195800 > 0.0195800/0.0006225 [1] 31.45382 > summary(dffits(mod2)) 3rd Qu. Min. lst Ou. Median Mean Max. -0.1609000 -0.0142100 0.0002489 0.0002899 0.0143400 0.1417000 > which.min(dffits(mod2)) 5464 Question 3: > attach(sleepST500) > boxplot(totalsleep~sleepdanger) > summary(aov(totalsleep~sleepdanger)) Df Sum Sq Mean Sq F value Pr(>F) sleepdanger 2 331.97 165.984 11.777 7.702e-05 *** Residuals 45 634.24 14.094 _ _ _ Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 > TukeyHSD(aov(totalsleep~sleepdanger)) Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = totalsleep ~ sleepdanger) \$sleepdanger diff lwr upr p adj Middle-Most 4.58125 1.364335 7.798165 0.0034411 6.21250 2.995585 9.429415 0.0000774 Least-Most Least-Middle 1.63125 -1.585665 4.848165 0.4425727 > summary(hatvalues(aov(totalsleep~sleepdanger))) Min. 1st Qu. Median Mean 3rd Qu. Max 0.0625 0.0625 0.0625 0.0625 0.0625 0.0625 > pairwise.t.test(totalsleep,sleepdanger) Pairwise comparisons using t tests with pooled SD data: totalsleep and sleepdanger Most Middle Middle 0.0024 -Least 8e-05 0.2255 P value adjustment method: holm

PROBLEM SET #1 STATISTICS 500 FALL 2012: DATA PAGE 1 Due in class at noon. This is an exam. Do not discuss it with anyone.

The data are from NHANES, the 2009-2010 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). The data are in a data.frame called "fish" with 5000 adults and 43 variables in the course workspace – you must download it again. A csv file, fish.csv, is available for those not using R:

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/

SEQN is the NHANES id number. This is a portion of NHANES 2009-2010.

age in years

female = 1 for female, 0 for male

povertyr is income expressed as a ratio of the poverty level (INDFMPIR), so 2 means twice the poverty level. Capped at 5.

education is 1-5 and is described in educationf. (DMDEDUC2)

mercury is the mercury level in the blood, (LBXTHG, mercury total ug/L)

cadmium is the cadmium level in the blood (LBXBCD - Blood cadmium ug/L) **lead** is lead level in the blood (LBXBPB - Blood lead ug/dL)

The rest of the data frame describes consumption of fish or shellfish over the prior 30 days. **tfish** is total number of servings of fish in the past 30 days, **tshell** is total number of servings of shell fish, breaded is total number of servings of breaded fish (part of tfish), etc. Mr. 51696 is 54, earns a little more than poverty despite being a college graduate, ate 24 servings of fish consisting of 12 servings of tuna and 12 of sardines. Because his mercury level is high, his mercindx is low.

> fish[1:2,]

	SFON age	female f	emalef	novertvr	educa	ation	۵	ducati	onf mercury
1	~ 5		-						-
	51696 54			1.39			5		ate 4.60
2	51796 62	1	female	5.00		5	College	Gradua	ate 0.85
	cadmium le	ead tfish	tshell	breaded	tuna	bass	catfish	cod f	latfish
1	0.25 2	.01 24	0	0	12	0	0	0	0
2	0.37 0	.93 11	б	0	3	0	0	4	0
	haddock ma	ackerel p	erch pi	ke pollad	ck poi	rgy sa	almon sa	rdines	seabass
1	0	0	0	0	0	0	0	12	0
2	0	0	0	0	0	0	2	0	0
	shark swoi	dfish tr	out wal	leye othe	erfisł	ı unkı	nownfish	clams	crabs
1	0	0	0	0	()	0	0	0
2	0	2	0	0	()	0	0	2
	crayfish 1	lobsters	mussels	oysters	scal	Lops :	shrimp o	thersh	ellfish
1	0	0	0	0		0	0		0
2	0	0	0	0		0	4		0
	unknownshe	ellfish							
1		0							
2		0							
> dim(fish)									
[]	L] 5019 4	13							

If a question says "A and B and C", true-or-false, then it is true if A and B and C are each true, and it is false if A is true, B is true, but C is false. "North Carolina is north of South Carolina and the moon is made of green cheese" is false. "A is true because of B" is false if A is true, B is true, but A is not true because of B. "A", true-or-false, is false if A is too crazy mean anything sufficiently coherent that it could be true.

PROBLEM SET #1 STATISTICS 500 FALL 201: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

> attach(fish)
Model #1

mercury = $\beta_0 + \beta_1 age + \beta_2 povertyr + \beta_3 education + \beta_4 tfish + \beta_5 tshell + \epsilon$ where ϵ are iid N(0, σ^2)

Model #2

Define a new variable, lmercury > lmercury<-log(mercury) lmercury = $\gamma_0 + \gamma_1 \text{ age} + \gamma_2 \text{ povertyr} + \gamma_3 \text{ education} + \gamma_4 \text{ tfish} + \gamma_5 \text{ tshell} + \eta$ where η are iid N(0, ω^2)

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary.

It is often useful to put two plots next to each other on the same page so you can see the same point in both plots. If you type

> par(mfrow=c(1,2))

then the next two plots will appear on the same page, the first on the left, the second on the right. For question 2, try doing this with a boxplot of the residuals on the left and a quantile-quantile plot of the residuals on the right. The command sets a graphics parameter (that's the 'par'), and it says that there should be 1 row of graphs with 2 columns, filling in the first row first. By setting graph parameters, you can control many aspects of a graph. The free document R for Beginners by Paradis (<u>http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf</u>) contains lots of useful information about graph parameters (see page 43).

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, answer every part. Write your name and id number on both sides of the answer page. Turn in only the answer page. Do not turn in additional pages. Do not turn in graphs. Brief answers suffice. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you circle the correct answer and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. Do not discuss the exam with anyone. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam. A perfect exam paper without a signature receives no credit. Due noon in class Thursday 26 Oct.

Name: _____ ID# _____

PROBLEM SET #1 STATISTICS 500 FALL 2012: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. Due noon in class Thursday 26 Oct. "This exam is my own work. I have not discussed it with anyone."

Your signature: _____

Question (Part 1) (6 points each)	Fill in or CIRCLE the correct answer.
1.1 Plot y=mercury against x=tfish. The	
four people with the highest levels of	
mercury all ate more than 20 servings of	TRUE FALSE
fish in the previous month.	
1.2 Add a lowess smooth to the plot in 1.1.	
(Use color to see clearly.) The curve tilts	
upwards, suggesting higher levels of	TRUE FALSE
mercury in the blood of people who ate	
more servings of fish in the previous month.	
1.3 A boxplot of mercury levels suggests the	
distribution is symmetric about its median	TRUE FALSE
and free of extreme observations.	
1.4 The one person with the highest level of	
mercury ate two servings of 'otherfish' and	
one serving of 'scallops' in the previous	TRUE FALSE
month.	

Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.
answer the questions in part 2 below	(Part 2) (7 points each)
2.1 A quantile-quantile plot of residuals from	
model 1 confirms that the errors in model 1	
are correctly modeled as Normally distributed	TRUE FALSE
with mean zero and constant variance.	
2.2 The Shapiro-Wilk test is a test of the null	
hypothesis that a group of independent	
observations is not Normally distributed.	TRUE FALSE
Therefore, a small P-value from this test	
confirms that the observations are Normal.	
2.3 Do the Shapiro-Wilk test on the residuals	
from model 1. What is the P-value? Is it	P-value:
plausible that the residuals are Normally	PLAUSIBLE NOT PLAUSIBLE
distributed with constant variance?	
2.4 Although there are indications that the	
residuals are not Normal, this is entirely due	TRUE FALSE
to a single outlier identified in question 1.4.	

Fit model 2 from the data page (Part 3) (6pts)	Fill in or CIRCLE the correct answer.
3. The quantile-quantile plot and Shapiro-	
Wilk test of of residuals from model 2	TRUE FALSE
confirm that model 2 has Normal errors.	

Name	e: ID#
	PROBLEM SET #1 STATISTICS 500 FALL 201: ANSWER PAGE 2
This is a	an exam. Do not discuss it with anyone. Due noon in class Thursday 26 Oct.

Fit model 2 from the data page. For the	Part 4
purpose of answering questions in part 4	Fill in or CIRCLE the correct answer.
below, assume that model 2 is true.	(7 points each)
4.1 In model 2, test the null hypothesis	(7 points cacit)
	Name: Value:
H ₀ : $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma_5 = 0$. What is the name of	Ivanie value
the test statistic? What is the numerical	DF = (,) P-value:
value of the test statistic? What are the	$DF = (\) F$ -value.
degrees of freedom (DF)? What is the P-	PLAUSIBLE NOT PLAUSIBLE
value? Is the null hypothesis plausible?	PLAUSIBLE NOT PLAUSIBLE
4.2 In model 2, test the null hypothesis that	NT N7 1
the coefficient of education is zero, $H_0: \gamma_3=0$.	Name: Value:
What is the name of the test statistic? What	
is the numerical value of the test statistic?	DF = P-value:
What are the degrees of freedom (DF)?	
What is the P-value? Is the null hypothesis	PLAUSIBLE NOT PLAUSIBLE
plausible?	
4.3 Using the answer to 4.2 and	TRUE FALSE
<pre>boxplot(lmercury~educationf)</pre>	
it is safe to say that professors emit mercury	CANNOT BE DETERMINED FROM
during lectures.	NHANES
4.4 Test the null hypothesis H ₀ : $\gamma_4 = \gamma_5 = 0$ that	
neither tfish nor tshell has a nonzero	Name: Value:
coefficient. What is the name of the test	
statistic? What is the numerical value of the	DF = (,) P-value:
test statistic? What are the degrees of	
freedom (DF)? What is the P-value? Is the	PLAUSIBLE NOT PLAUSIBLE
null hypothesis plausible?	
	1

Fit model 2 and use it for part 5 below	Fill in or CIRCLE the correct answer.
	(7 points each)
5.1 For model 2, plot residuals against fitted	
values, adding a lowess smooth (best in	TRUE FALSE
color). The lowess smooth shows no	
distinctive pattern relevant to regression.	Value:
5.2 For model 2, plot residuals against tfish,	
adding a lowess smooth (best in color). The	TRUE FALSE
lowess smooth shows no distinctive pattern	
relevant to regression.	

Problem set 1, Fall 2012, Stat	tistics 500, Answer Page.
Question (Part 1) (6 points each)	Fill in or CIRCLE the correct answer.
1.1 Plot y=mercury against x=tfish. The	
four people with the highest levels of	
mercury all ate more than 20 servings of	TRUE FALSE
fish in the previous month.	
1.2 Add a lowess smooth to the plot in 1.1.	
(Use color to see clearly.) The curve tilts	
upwards, suggesting higher levels of	TRUE FALSE
mercury in the blood of people who ate	
more servings of fish in the previous month.	
1.3 A boxplot of mercury levels suggests the	
distribution is symmetric about its median	TRUE (FALSE)
and free of extreme observations.	
1.4 The one person with the highest level of	\frown
mercury ate two servings of 'otherfish' and	
one serving of 'scallops' in the previous	TRUE FALSE
month.	
Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.
answer the questions in part 2 below	(Part 2) (7 points each)
2.1 A quantile-quantile plot of residuals from	(1 art 2) (7 points cach)
model 1 confirms that the errors in model 1	
are correctly modeled as Normally distributed	TRUE (FALSE)
with mean zero and constant variance.	
2.2 The Shapiro-Wilk test is a test of the null	
hypothesis that a group of independent	
observations is not Normally distributed.	TRUE (FALSE)
Therefore, a small P-value from this test	
confirms that the observations are Normal.	
2.3 Do the Shapiro-Wilk test on the residuals	P-value: $< 2.2 \times 10^{-16}$
from model 1. What is the P-value? Is it	
plausible that the residuals are Normally	PLAUSIBLE NOT PLAUSIBLE
distributed with constant variance?	
2.4 Although there are indications that the	
residuals are not Normal, this is entirely due	TRUE FALSE
to a single outlier identified in question 1.4.	
Fit model 2 from the data page (Part 3) (6pts)	Fill in or CIRCLE the correct answer.
3. The quantile-quantile plot and Shapiro-	
Wilk test of of residuals from model 2	TRUE FALSE
confirm that model 2 has Normal errors.	

Problem set 1, Fall 2012, Statistics 500, Answer Page, 2.

Fit model 2 from the data page. For the	Part 4
purpose of answering questions in part 4	Fill in or CIRCLE the correct answer.

below, assume that model 2 is true.	(7 points each)
4.1 In model 2, test the null hypothesis	
H ₀ : $\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 = \gamma_5 = 0$. What is the name of	Name: F-test Value: 364.2
the test statistic? What is the numerical	$DE (5,4004) D = 1,, 2,2,10^{-16}$
value of the test statistic? What are the	DF = $(5, 4994)$ P-value: $< 2.2 \times 10^{-16}$
degrees of freedom (DF)? What is the P-	PLAUSIBLE NOT PLAUSIBLE
value? Is the null hypothesis plausible?	PLAUSIBLE NOT PLAUSIBLE
4.2 In model 2, test the null hypothesis that	
the coefficient of education is zero, $H_0: \gamma_3=0$.	Name: t-test Value: 4.92
What is the name of the test statistic? What	
is the numerical value of the test statistic?	DF = 4994 P-value: 8.79×10^{-7}
What are the degrees of freedom (DF)?	
What is the P-value? Is the null hypothesis	PLAUSIBLE C NOT PLAUSIBLE
plausible?	
4.3 Using the answer to 4.2 and	TRUE FALSE
<pre>boxplot(lmercury~educationf)</pre>	
it is safe to say that professors emit mercup	CANNOT BE DETERMINED FROM
during lectures.	NHANES
4.4 Test the null hypothesis H ₀ : $\gamma_4 = \gamma_5 = 0$ that	
4.4 Test the null hypothesis $H_0: \gamma_4 = \gamma_5 = 0$ that neither tfish nor tshell has a nonzero	Name: F-test Value: 603.35
neither tfish nor tshell has a nonzero	Name: F-test Value: 603.35 DF = (2, 4994) P-value: $< 2.2 \times 10^{-16}$
neither tfish nor tshell has a nonzero coefficient. What is the name of the test	DF = $(2, 4994)$ P-value: $< 2.2 \times 10^{-16}$
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the	
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of	DF = $(2, 4994)$ P-value: $< 2.2 \times 10^{-16}$
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible?	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the	DF = $(2, 4994)$ P-value: $< 2.2x10^{-16}$ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer.
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each)
 neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in 	DF = $(2, 4994)$ P-value: $< 2.2x10^{-16}$ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer.
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in color). The lowess smooth shows no	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each)
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in color). The lowess smooth shows no distinctive pattern relevant to regression.	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each)
 neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in color). The lowess smooth shows no distinctive pattern relevant to regression. 5.2 For model 2, plot residuals against tfish, 	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each) TRUE FALSE
neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in color). The lowess smooth shows no distinctive pattern relevant to regression. 5.2 For model 2, plot residuals against tfish, adding a lowess smooth (best in color). The	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each)
 neither tfish nor tshell has a nonzero coefficient. What is the name of the test statistic? What is the numerical value of the test statistic? What are the degrees of freedom (DF)? What is the P-value? Is the null hypothesis plausible? Fit model 2 and use it for part 5 below 5.1 For model 2, plot residuals against fitted values, adding a lowess smooth (best in color). The lowess smooth shows no distinctive pattern relevant to regression. 5.2 For model 2, plot residuals against tfish, 	DF = (2, 4994) P-value: < 2.2x10 ⁻¹⁶ PLAUSIBLE NOT PLAUSIBLE Fill in or CIRCLE the correct answer. (7 points each) TRUE FALSE

```
Problem Set 1 Fall 2012 Statistics 500 Answers: Doing the Problem Set in R
> attach(fish)
1.
> plot(tfish,mercury)
> lines(lowess(tfish,mercury),col="red")
> boxplot(mercury)
> which.max(mercury)
[1] 1184
> fish[1184,]
SEQN age female femalef povertyr education, etc
54251 48
               0
                    male
                             0.98
                                           5, etc
2.
> mod1<-lm(mercury ~ age+povertyr+education+tfish+tshell)</pre>
> plot(mod1$fit,mod1$resid)
> lines(lowess(mod1$fit,mod1$resid),col="red")
> qqnorm(mod1$resid)
> qqline(mod1$resid)
> boxplot(mod1$resid)
> shapiro.test(mod1$resid)
        Shapiro-Wilk normality test
W = 0.4581, p-value < 2.2e-16
The null hypothesis is Normality.
3.
> lmercury<-log(mercury)</pre>
> mod2<-lm(lmercury ~ age +</pre>
povertyr+education+tfish+tshell)
> shapiro.test(mod2$resid)
        Shapiro-Wilk normality test
W = 0.9884, p-value < 2.2e-16
> qqnorm(mod2$resid)
> qqline(mod2$resid)
Very far from Normal in many ways.
4.1-4.3
> summary(mod2)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.911659 0.047897 -19.034 < 2e-16 ***
             0.003154
                        0.000672 4.694 2.75e-06 ***
age
            0.087227 0.008071 10.807 < 2e-16 ***
povertyr
                        0.010294 4.923 8.79e-07 ***
education
             0.050681
                        0.002815 26.487 < 2e-16 ***
tfish
             0.074570
             0.048100
                        0.003657 13.154 < 2e-16 ***
tshell
Residual standard error: 0.8142 on 4994 degrees of freedom
Multiple R-squared: 0.2672, Adjusted R-squared: 0.2665
F-statistic: 364.2 on 5 and 4994 DF, p-value: < 2.2e-16
```

Problem Set 1 Fall 2012 Statistics 500 Answers: Doing the Problem Set in R, continued

```
4.4
> modr<-lm(lmercury ~ age + povertyr + education)</pre>
> anova(modr,mod2)
Analysis of Variance Table
Model 1: lmercury ~ age + povertyr + education
Model 2: lmercury ~ age + povertyr + education + tfish +
tshell
           RSS Df Sum of Sq F
 Res.Df
                                     Pr(>F)
1
   4996 4110.2
   4994 3310.3 2 799.88 603.35 < 2.2e-16 ***
2
5.
> plot(mod2$fit,mod2$resid)
> lines(lowess(mod2$fit,mod2$resid),col="red")
```

> plot(tfish,mod2\$resid)

> lines(lowess(tfish,mod2\$resid),col="red")

The curves are inverted U's suggesting curvature that belongs in the model, not in the residuals.

PROBLEM SET #2 STATISTICS 500 FALL 2012: DATA PAGE 1 Due in class at noon on Tuesday 4 December 2012. This is an exam. Do not discuss it with anyone.

The data are again from NHANES, the 2009-2010 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). The data are in a data.frame called "fish" with 5000 adults and 43 variables in the course workspace – you must download it again. A csv file, fish.csv, is available for those not using R: http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/

SEQN is the NHANES id number. This is a portion of NHANES 2009-2010. **age** in years

female = 1 for female, 0 for male

povertyr is income expressed as a ratio of the poverty level (INDFMPIR), so 2 means twice the poverty level. Capped at 5.

education is 1-5 and is described in educationf. (DMDEDUC2)

mercury is the mercury level in the blood, (LBXTHG, mercury total ug/L) **cadmium** is the cadmium level in the blood (LBXBCD - Blood cadmium ug/L) **lead** is lead level in the blood (LBXBPB - Blood lead ug/dL)

The rest of the data frame describes consumption of fish or shellfish over the prior 30 days. **tfish** is total number of servings of fish in the past 30 days, **tshell** is total number of servings of shell fish, breaded is total number of servings of breaded fish (part of tfish), etc. Ms. 52964 is 80, earns more than 5 times the poverty level, is a college graduate, ate 4 servings of fish, 4 servings of shellfish, including tuna, cod, haddock, salmon, clams and shrimp.

> fish[1:2,]

SEQN	age female	e femalei	= pove	rtyr	educatio	on	ed	ucationf
580 52964	80 1	female	2	5		5 Col	lege (Graduate
1092 57154	60 () male	2	5		5 Col	lege (Graduate
mercur	/ cadmium	lead tf:	ish tsl	hell	breaded	tuna	bass (catfish
580 1.2	3 0.56	2.39	4	4	0	1	0	0
1092 2.0	0.33	2.03	5	4	0	1	0	2
cod fla	atfish had	dock mad	ckerel	perc	ch pike j	pollac	k por	ЗХ
580 1	0	1	0		0 0		0	0
1092 0	0	0	0		0 0		0	0
salmon	sardines	seabass	shark	swor	dfish t	rout w	alley	e
580 1	0	0	0		0	0		0
1092 2	0	0	0		0	0		0
otherf	ish unknov	wnfish cl	Lams ci	rabs	crayfis	h lobs	ters 1	mussels
580	0	0	2	0		0	0	0
1092	0	0	0	0		0	0	0
oyster	s scallops	s shrimp	other	shell	fish un	knowns	hellf	ish
580) () 2			0			0
1092) () 2			2			0
<pre>> dim(fish)</pre>								
[1] 5000	43							

If a question says "A and B and C", true-or-false, then it is true if A and B and C are each true, and it is false if A is true, B is true, but C is false. "North Carolina is north of South Carolina and the moon is made of green cheese" is false. "A is true because of B" is false if A is true, B is true, but A is not true because of B. "A", true-or-false, is false if A is too crazy mean anything sufficiently coherent that it could be true.

PROBLEM SET #2 STATISTICS 500 FALL 201: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

> attach(fish) Model #1 mercury = $\gamma_0 + \gamma_1 \operatorname{age} + \gamma_2 \operatorname{povertyr} + \gamma_3 \operatorname{education} + \gamma_4 \operatorname{female} + \gamma_5 \operatorname{tfish} + \gamma_6 \operatorname{tshell} + \gamma_6 \operatorname{swordfish} + \eta \quad \text{where} \quad \eta \operatorname{are} \operatorname{iid} N(0, \omega^2)$ Model #2 Define a new variable, Imercury > 12mercury<-log2(mercury) (That 1 is an L not a 1=one)</pre>

$$\begin{split} &l2mercury = \beta_0 + \beta_1 \, age + \ \beta_2 \ povertyr + \ \beta_3 \ education + \beta_4 \ female + \beta_5 \ tfish + \beta_6 \ tshell \\ &+ \beta_7 \ swordfish \ + \epsilon \quad where \quad \epsilon \ are \ iid \ N(0,\sigma^2) \end{split}$$

Model 1 has slopes γ (gamma), while model 2 has slopes β (beta), so that different things have different names. The choice of Greek letters is arbitrary.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, answer every part. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. Brief answers suffice. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you circle the correct answer and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. Do not discuss the exam with anyone. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam. Due noon in class Tuesday 4 December 2012.

Last Name: First	Name: ID#	
PROBLEM SET #2 STATISTICS	500 FALL 2012: ANSWER PAGE	1
This is an exam. Do not discuss	it with anyone. Due noon in class	
Part 1: Fit Model 1 from the data page and	Fill in or CIRCLE the correct a	inswer.
use it to answer the questions in Part 1.		
1.1 The P-value from the Shapiro-Wilk test		
of Normality applied to the residuals from	TRUE FALSE	
model 1 is very small, less than 0.0001.		
1.2 The Box-Cox method (in the MASS		
package) applied to model 1 suggests that a		
transformation of mercury by something	TRUE FALSE	
between the log and the reciprocal would		
improve the fit of a Normal theory linear		
model.		

Part 2: Fit model 2 from the data page. For Part 2, assume that model 2 is true.	Fill in or CIRCLE the correct answer.
2.1 Model 2 uses base 2 logs, that is log_2 . If $log_2(A)$ -	TRUE FALSE
$log_2(B) = 2$ then A = 2B.	
2.2 What is the 95% confidence interval (CI) for β_4 , the coefficient of female?	CI: [,]
2.3 Based on the confidence interval in 2.2, model 2 says that if a man and a woman were the same in terms of other variables in the model (age, povertryr,	
etc), then one should predict the woman will have half the mercury in her blood that a man will have. (Base this on the confidence interval in 2.2).	TRUE FALSE
2.4 If the coefficient of swordfish, β_7 , in model 2 were 0 (that is, if H ₀ : β_7 =0 were true), then a serving of swordfish would be associated with the same amount of mercury as a serving of a typical serving of fish in tfish.	TRUE FALSE
2.5 In model 2, the hypothesis in 2.4, H_0 : $\beta_7=0$, is judged plausible by the appropriate test.	TRUE FALSE

Part 3: Model 2 assumes that tfish has the	Fill in or CIRCLE the correct answer.	
same slope, namely β_5 , for men and women.		
3.1 For model 2, test the null hypothesis H_0		
that tfish has the same slope for men and	Name: Value:	
women against the alternative that they have		
different slopes. What is the name of the test	P-value:	
statistic? What is the value of the test	CIRCLE ONE	
statistic? What is the P-value ? Is H_0	Plausible Not Plausible	
plausible?		

Last Name:	Last Name: First Name:	
PROBLEM SET #2 STATISTICS 500 FALL		201: ANSWER PAGE 2
This is an exam. D	o not discuss it with any	one. Due noon in class
Part 4 : Model 2 fits the $\log_2(n)$	nercury) as linear in tfish.	CIRCLE the correct answer.
Fit a model similar to model 2	• •	
is quadratic in the one variable	tfish alone. (I.e., no	
crossproducts with other varial	bles. Remember to center	
4.1 Based on the appropriate s	statistical test, the linear	
model 2 seems accurate and th	e quadratic in tfish is	TRUE FALSE
not needed.		
4.2 If the point estimate of the	coefficient of the	
quadratic-in-tfish (ie, the single	e estimated coefficient,	
not its confidence interval) we	re taken as the true	U-shape Inverted U-shape
coefficient, then it would be adding a bit of a U-shape		
bend (as opposed to a bit of an inverted U shape).		
Part 5 : Use the studentized residuals from model 2 to		CIRCLE the correct answer.
answer part 5.		
5.1 Which person has the large	gest ABSOLUTE	
studentized residual? Give the	SEQN number. What	SEQN: mercury:
are the values of mercury, tfish	n, tshell and swordfish	
for this person? What is the value (with sign +/-) for		tfish:tshell:
this studentized residual?		
		studentized residual:
5.2 Under model 2, test the nul	ll hypothesis that the	
person you identified in 5.1 is not an outlier against		t-statistic: df:
the alternative that he is an outlier. What is the value		

the alternative that he is an outlier. what is the value		
of the t-statistic for this person? What are the degrees	P-value cutpoint:	
of freedom (df)? How small must the two-sided P-		
value from the t-distribution be for the most extreme	Outlier	Not an Outlier
observation to be an outlier? Is this person an outlier?		

Part 6 : Base your answers on model 2.	CIRCLE the correct answer.
6.1 The person with the largest leverage (ie hatvalue)	
ate 32 servings of fish during the month including 8	TRUE FALSE
servings of swordfish (True/False). Give the value of	
this largest leverage.	Value of leverage:
6.2 Which person has the largest <u>absolute</u> DFFITS?	
Give the SEQN and the value of DFFITS for this	SEQN: DFFITS:
individual with its sign (+/-). This person does not	
stand out in a boxplot of the 5000 DFFITS	TRUE FALSE
(true/false)	

PROBLEM SET #2 STATISTICS 500 FALL 2012: ANSWER PAGE 1

Part 1: Fit Model 1 from the data page and	Fill in or CIRCLE the correct answer.		
use it to answer the questions in Part 1.			
1.1 The P-value from the Shapiro-Wilk test	$\left(\right)$		
of Normality applied to the residuals from	TRUE FALSE		
model 1 is very small, less than 0.0001.			
1.2 The Box-Cox method (in the MASS			
package) applied to model 1 suggests that a			
transformation of mercury by something	(TRUE) FALSE		
between the log and the reciprocal would			
improve the fit of a Normal theory linear			
model.			

Part 2: Fit model 2 from the data page. For Part 2,	Fill in or CIRCLE the correct
assume that model 2 is true.	answer
2.1 Model 2 uses base 2 logs, that is \log_2 . If $\log_2(A)$ -	TRUE FALSE
$\log_2(B) = 2$ then A = 2B.	
2.2 What is the 95% confidence interval (CI) for β_4 ,	
the coefficient of female?	CI: [-0.161 , -0.031]
2.3 Based on the confidence interval in 2.2, model 2	
says that if a man and a woman were the same in	
terms of other variables in the model (age, povertryr,	\frown
etc), then one should predict the woman will have	TRUE C FALSE
half the mercury in her blood that a man will have.	
(Base this on the confidence interval in 2.2).	
2.4 If the coefficient of swordfish, β_7 , in model 2	
were 0 (that is, if H_0 : $\beta_7=0$ were true), then a serving	\frown
of swordfish would be associated with the same	C TRUE J FALSE
amount of mercury as a serving of a typical serving of	
fish in tfish.	
2.5 In model 2, the hypothesis in 2.4, H_0 : $\beta_7=0$, is	
	TRUE (FALSE)
judged plausible by the appropriate test.	INUE FALSE

Part 3: Model 2 assumes that tfish has the	Fill in or CIRCLE the correct answer.
same slope, namely β_5 , for men and women.	
3.1 For model 2, test the null hypothesis H_0	
that tfish has the same slope for men and	Name: t-test Value: -1.621
women against the alternative that they have	
different slopes. What is the name of the test	P-value: 0.105
statistic? What is the value of the test	CIRCLE ONE
statistic? What is the P-value ? Is H_0	Plausible Not Plausible
plausible?	

PROBLEM SET #2 STATISTICS 500 FALL 201: ANSWER PAGE 2

Answers	
Part 4 : Model 2 fits the log ₂ (mercury) as linear in tfish	. CIRCLE the correct answer.
Fit a model similar to model 2 in all ways except that it	
is quadratic in the one variable tfish alone. (I.e., no	
crossproducts with other variables. Remember to cente	r.
4.1 Based on the appropriate statistical test, the linear	
model 2 seems accurate and the quadratic in tfish is	TRUE (FALSE)
not needed.	
4.2 If the point estimate of the coefficient of the	
quadratic in tfish (ie, the single estimated coefficient,	
not its confidence interval) were taken as the true	U-shape Inverted U-shape
coefficient, then it would be adding a bit of a U-shape	
bend (as opposed to a bit of an inverted U shape).	

Part 5 : Use the studentized residuals from model 2 to answer part 5.	CIRCLE the correct answer.		
5.1 Which person has the largest ABSOLUTE studentized residual? Give the SEQN number. What are the values of mercury, tfish, tshell and swordfish	SEQN: 54251 mercury: 85.7		
for this person? What is the value (with sign +/-) for	tfish: 2 tshell: 1		
this studentized residual?	studentized residual: 5.748		
	studelitized lesidual. 3.740		
5.2 5.2 Under model 2, test the null hypothesis that			
the person you identified in 5.1 is not an outlier	t-statistic: 5.748 df: 4991		
against the alternative that he is an outlier. What is			
the value of the t-statistic for this person? What are	P-value cutpoint:		
the degrees of freedom (df)? How small must the	0.00001==.05/5000		
two-sided P-value from the t-distribution be for the			
most extreme observation to be an outlier? Is this	Outlier Not an Outlier		
person an outlier?			

Part 6 : Base your answers on model 2.	CIRCLE the correct answer.
6.1 The person with the largest leverage (ie hatvalue)	
ate 32 servings of fish during the month including 8	(TRUE) FALSE
servings of swordfish (True/False). Give the value of	
this largest leverage.	Value: 0.2685
6.2 Which person has the largest <u>absolute</u> DFFITS?	
Give the SEQN and the value of DFFITS for this	SEQN: 52288 DFFITS: -3.008
individual with its sign (+/-). This person does not	\bigcirc
stand out as extreme in a boxplot of the 5000 DFFITS	TRUE (FALSE)
(true/false)	

```
Problem 2, Fall 2012 Answers
                       Doing the Problem in R
> attach(fish)
Part 1.
> mdl<-lm(mercury~age+povertyr+education+female+tfish+tshell+swordfish)</pre>
1.1
> shapiro.test(mdl$resid)
        Shapiro-Wilk normality test
data: mdl$resid
W = 0.4574, p-value < 2.2e-16
This is strong evidence that the residuals are not Normal.
1.2
> library(MASS)
> boxcox(md1)
The plausible values of \lambda are between 0 and -1, closer to 0. Remember 0
is the log, while -1 is the reciprocal. Actually, -1/10 is somewhat
better than 0 or -1 according to boxcox.
Part 2.
2.1 Right idea, but wrong value:
> log2(8) - log2(2)
[1] 2
> 8/2
[1] 4
> \log_2(12) - \log_2(3)
[1] 2
> 12/3
[1] 4
2.2
> md2<-
lm(l2mercury~age+povertyr+education+female+tfish+tshell+swordfish)
> confint(md2)
                   2.5 %
                               97.5 %
(Intercept) -1.377588658 -1.097776489
            0.002494721 0.006278769
age
•••
female
            -0.161245428 -0.030922609
•••
swordfish
            0.349718792 0.651199942
2.3 Taking antilogs, the interval of multipliers does not include ½.
> 2^{(-0.161245428)}
[1] 0.8942528
> 2^{(-0.030922609)}
[1] 0.9787942
> summary(md2)
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.2376826 0.0713647 -17.343 < 2e-16 ***
swordfish 0.5004594 0.0768912 6.509 8.33e-11 ***
```

```
Problem 2, Fall 2012 Answers
Part 3
> tfishfemale<-tfish*female</pre>
> summary(lm(l2mercury ~ age + povertyr + education +
female +
      tfish + tshell + swordfish + tfishfemale))
+
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.2572879 0.0723705 -17.373 < 2e-16 ***
               0.0043904 0.0009649 4.550 5.49e-06 ***
age
•••
tfishfemale -0.0121300 0.0074821 -1.621
                                                    0.105
Part 4
> tfish2<-(tfish-mean(tfish))^2</pre>
> summary(lm(l2mercury ~ age + povertyr + education + female +
      tfish + tshell + swordfish + tfish2))
+
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.1999318 0.0702395 -17.083 < 2e-16 ***
           0.0033022 0.0009527 3.466 0.000533 ***
age
•••
tfish2
           -0.0039278 0.0003004 -13.074 < 2e-16 ***
Part 5
> which.max(abs(rstudent(md2)))
1184
1184
> fish[1184,]
> rstudent(md2)[1184]
5.74752
> 2*5000*pt(-5.74752,4990)
[1] 4.797004e-05
Part 6
6.1
> which.max(hatvalues(md2))
1010
> fish[1010,]
> max(hatvalues(md2))
[1] 0.2685011
> mean(hatvalues(md2))*2
[1] 0.0032
6.2
> which.max(abs(dffits(md2)))
1010
> dffits(md2)[1010]
    1010
-3.007509 Wow! So much for model 2!
> boxplot(dffits(md2))
```

PROBLEM SET #3 STATISTICS 500 FALL 2012: DATA PAGE 1 Due at noon Wednesday December 19, 2012, at my office, 473 JMHH. This is an exam. Do not discuss it with anyone.

The first data are again from NHANES, the 2009-2010 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). The data are in a data.frame called "fish" with 5000 adults and 43 variables in the course workspace – you must download it again. A csv file, fish.csv, is available for those not using R: <u>http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/</u> SEQN is the NHANES id number. This is a portion of NHANES 2009-2010. **age** in years **female** = 1 for female, 0 for male

mercury is the mercury level in the blood, (LBXTHG, mercury total ug/L) The rest of the data frame describes consumption of fish or shellfish over the prior 30 days. **tfish** is total number of servings of fish in the past 30 days, **tshell** is total number of servings of shell fish, breaded is total number of servings of breaded fish (part of tfish), etc. Ms. 52964 is 80, earns more than 5 times the poverty level, is a college graduate, ate 4 servings of fish, 4 servings of shellfish, including tuna, cod, haddock, salmon, clams and shrimp.

> dim(fish)

[1] 5000 43

If a question says "A and B and C", true-or-false, then it is true if A and B and C are each true, and it is false if A is true, B is true, but C is false. "North Carolina is north of South Carolina and the moon is made of green cheese" is false. "A is true because of B" is false if A is true, B is true, but A is not true because of B. "A", true-or-false, is false if A is too crazy mean anything sufficiently coherent that it could be true.

FishMod: For the fish data, let y = log2(mercury) and consider a linear model for y using the following predictors: "age" "female" "tfish" "breaded" "tuna" "cod" "salmon" "sardines" "shark" "swordfish". So there are 10 predictors. Assume y is linear in the predictors with independent errors have mean zero, constant variance, and a Normal distribution.

The **ceramic data** is in the object ceramic in the course R workspace. It is also available ceramic.csv at the web page above. It is taken from an experiment done at the Ceramics Division, Materials Science and Engineering Lab, NIST. They describe it as follows: "The original data set was part of a high performance ceramics experiment with the goal of characterizing the effect of grinding parameters on sintered reactionbonded silicon nitride. "There are 32 observations. The outcome, Y, is the strength of the ceramic material. We will focus on two factors, grit = wheel grit (140/170 or 80/100) and direction (longitudinal or transverse). The variable GD combines grit and direction into one nominal variable with four levels. Do a one-way anova with 4 groups. As a linear model (the **CeramicModel**), assume Y=strength is independently and Normally distributed with constant variance and a mean that depends upon grit and direction (GD).

IMPORTANT: When asked to give the name of a group, use the short form in gd, such as 140:L.

			-						
>	ceramic					_			_
				direction				GD	gd
1	-1	-1	-1	-1	-1	680.45		140/170:long	
2	1	-1	-1	-1	-1	722.48	30	140/170:long	
3	-1	1	-1	-1	-1	702.14	14	140/170:long	
4	1	1	-1	-1	-1	666.93	8	140/170:long	
5	-1	-1	1	-1	-1	703.67	32	80/100:long	80:L
6	1	-1	1	-1	-1	642.14	20	80/100:long	
7	-1	1	1	-1	-1	692.98	26	80/100:long	80:L
8	1	1	1	-1	-1	669.26	24	80/100:long	80:L
9	-1	-1	-1	1	-1	491.58	10	140/170:tran	140:T
10) 1	-1	-1	1	-1	475.52	16	140/170:tran	140:T
11	1	1	-1	1	-1	478.76	27	140/170:tran	140:T
12	2 1	1	-1	1	-1	568.23	18	140/170:tran	140:T
13	3 -1	-1	1	1	-1	444.72	3	80/100:tran	80:T
14	1	-1	1	1	-1	410.37	19	80/100:tran	80:T
15	5 -1	1	1	1	-1	428.51	31	80/100:tran	80:T
16	5 1	1	1	1	-1	491.47	15	80/100:tran	80:T
17	-1	-1	-1	-1	1	607.34	12	140/170:long	140:L
18	3 1	-1	-1	-1	1	620.80	1	140/170:long	
19	9 -1	1	-1	-1	1	610.55	4	140/170:long	140:L
20) 1	1	-1	-1	1	638.04	23	140/170:long	140:L
21	1	-1	1	-1	1	585.19	2	80/100:long	80:L
22	2 1	-1	1	-1	1	586.17	28	80/100:long	80:L
23	3 -1	1	1	-1	1	601.67	11	80/100:long	80:L
24	1	1	1	-1	1	608.31	9	80/100:long	80:L
25	5 -1	-1	-1	1	1	442.90	25	140/170:tran	140:T
26	5 1	-1	-1	1	1	434.41	21	140/170:tran	140:T
27	/ -1	1	-1	1	1	417.66	6	140/170:tran	140:т
28	3 1	1	-1	1	1	510.84	7	140/170:tran	140:т
29) -1	-1	1	1	1	392.11	5	80/100:tran	80:т
30) 1	-1	1	1	1	343.22	13	80/100:tran	80:T
31	-1	1	1	1	1	385.52	22	80/100:tran	80:T
32	2 1	1	1	1	1	446.73	29	80/100:tran	80:T

PROBLEM SET #3 STATISTICS 500 FALL 201: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

Remark on question 3.6: The degrees of freedom between the four levels of GD may be partitioned into a main effect of G, a main effect of D, and an interaction or cross-product of G and D. You can do this with regression (grit, direction) or with contrasts.

Follow instructions. If a question has several parts, answer every part. Write your name and id number on both sides of the answer page. Turn in only the answer page. Do not turn in additional pages. Brief answers suffice. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you circle the correct answer and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. Make and keep a photocopy of your answer page. This is an exam. Do not discuss the exam with anyone. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

The exam is due **at noon Wednesday December 19, 2012, at my office, 473 JMHH**. You may turn in the exam early by placing it in an envelope addressed to me and leaving it in my mail box in statistics, 4th floor, Huntsman Hall. You may give it to Adam at the front desk in statistics if you prefer. Make and keep a photocopy of your answer page. The answer key will be posted in the revised bulk pack on-line.

	: ID#
PROBLEM SET #3 STATISTICS 500 FA	
This is an exam. Do not discuss it with anyone.	
Use FishMod to answer the questions in part 1.	Fill in/CIRCLE the Correct Answer
1.1 Consider all of the models that can be formed	
from FishMod by using subsets of variables,	
including the model with 10 predictors and the	Number of models =
model with no predictors. How many models are	
there?	
1.2 For the models in 1.1, what is the smallest	
value of C_P ? How many predictor variables are in	Smallest C _P :
this model? How many regression slope (beta)	
parameters are in this model, including the	predictors: parameters:
constant as one parameter?	
1.3 For the 10 predictors in FishMod, list the	List of predictor names:
predictors that are NOT in the model in 1.2 with	
the smallest C _P .	
1.4 Whenever any model in any problem is the	
submodel with the smallest C _P then by virtue of	
having the smallest C _P this model is estimated to	TRUE FALSE
have all predictors with nonzero coefficients.	
1.5 The model identified in 1.2 clearly does NOT	
have all of the predictors with nonzero	
coefficients based on comparing the value of C _P	TRUE FALSE
and the number of parameters in this model.	
1.6 Of the models mentioned in 1.1, the model	
identified in 1.2 (smallest C _P) also is the model	TRUE FALSE
with the largest R^2 .	
1.7 Comparing C _P values to the number of	
parameters in the model, there is a model with 4	
predictors that is estimated to have all of the	
predictors with nonzero coefficients, but the	TRUE FALSE
model in 1.2 is estimated to predict y more	
accurately.	
1.8 Using the model with all 10 predictors, which	
one of the 10 predictors has the largest variance	Variable name:
inflation factor (vif)? What is the value of this one	
vif? What is the R^2 of this variable with the other	vif: R ² :
9 predictors in the 10 predictor model?	
1.9 In the model in 1.2 (lowest C _P), a serving of	
breaded fish is estimated to be worse than a	
serving of fish unspecified by the variables in the	TRUE FALSE
model, breaded fish being associated with extra	
mercury.	

 Last Name:
 ID#

PROBLEM SET #2 STATISTICS 500 FALL 201: ANSWER PAGE 2

This is an exam. Do not discuss it with anyone.

2. View the ceramic data in terms of a one-way analysis of variance with four groups defined by GD. Fill in the following analysis of variance table.

Source of	Sum of Squares	Degrees of	Mean Square	F-statistic
variation		Freedom		
Between				
Groups				
Within Groups				XXXXXXXX
(Residual)				XXXXXXXX

3. Use the ceramic data and the	Fill in or CIRCLE the correct answer
CeramicModel to answer the questions in	
part 3.	
3.1 Use the anova table in part 2 to test the	
null hypothesis that the four groups do not	P-value:
differ. What is the P-value for the F-	
statistic? Is it plausible that the four groups	PLAUSIBLE NOT PLAUSIBLE
do not differ?	
3.2 Four treatment groups defined by GD	
may be compared in pairs, group 1 to group	
2, group 1 to group 3, etc. How many	Number of comparisons:
distinct comparisons are there of two	
groups? (Group 1 with 2 is the same	
comparison as group 2 with group 1).	
3.3 Use Tukey's method to perform all of	
the comparisons in 3.2 at an experiment-	
wise error rate of 5%. List ALL	
comparisons that are NOT significant. (If	
none, write none.) One possible	
comparison is "140:L vs 80:T".	
3.4 Use Holm's method to perform all of	
the comparisons in 3.2 at an experiment-	
wise error rate of 5%. List ALL	
comparisons that are NOT significant. (If	
none, write none.) One possible	
comparison is "140:L vs 80:T".	
3.5 To say that the experiment-wise error	
rate is strongly controlled at 5% is to say	
that, no matter which groups truly differ,	TRUE FALSE
the chance of falsely declaring at least one	
pair of groups different is at most 5%.	
3.6 See remark on the data page. Test the	H_0 is:
null hypothesis H_0 that there is no	P-value: Plausible Not Plausible
interaction between grit and direction.	

PROBLEM SET #3 STATISTICS 500 FALL 2012: DATA PAGE 1 Due in class at noon . This is an exam. Do not discuss it with anyone.

The first data are again from NHANES, the 2009-2010 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). The data are in a data.frame called "fish" with 5000 adults and 43 variables in the course workspace – you must download it again. A csv file, fish.csv, is available for those not using R: <u>http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/</u> SEQN is the NHANES id number. This is a portion of NHANES 2009-2010. **age** in years **female** = 1 for female, 0 for male

mercury is the mercury level in the blood, (LBXTHG, mercury total ug/L) The rest of the data frame describes consumption of fish or shellfish over the prior 30 days. **tfish** is total number of servings of fish in the past 30 days, **tshell** is total number of servings of shell fish, breaded is total number of servings of breaded fish (part of tfish), etc. Ms. 52964 is 80, earns more than 5 times the poverty level, is a college graduate, ate 4 servings of fish, 4 servings of shellfish, including tuna, cod, haddock, salmon, clams and shrimp.

> dim(fish)

[1] 5000 43

If a question says "A and B and C", true-or-false, then it is true if A and B and C are each true, and it is false if A is true, B is true, but C is false. "North Carolina is north of South Carolina and the moon is made of green cheese" is false. "A is true because of B" is false if A is true, B is true, but A is not true because of B. "A", true-or-false, is false if A is too crazy mean anything sufficiently coherent that it could be true.

FishMod: For the fish data, let y = log2(mercury) and consider a linear model for y using the following predictors: "age" "female" "tfish" "breaded" "tuna" "cod" "salmon" "sardines" "shark" "swordfish". So there are 10 predictors. Assume y is linear in the predictors with independent errors have mean zero, constant variance, and a Normal distribution.

The **ceramic data** is in the object ceramic in the course R workspace. It is taken from an experiment done at the Ceramics Division, Materials Science and Engineering Lab, NIST. They describe it as follows: "The original data set was part of a high performance ceramics experiment with the goal of characterizing the effect of grinding parameters on sintered reaction-bonded silicon nitride. " There are 32 observations. The outcome, Y, is the strength of the ceramic material. We will focus on two factors, grit = wheel grit (140/170 or 80/100) and direction (longitudinal or transverse). The variable GD combines grit and direction into one nominal variable with four levels. As a linear model (the **CeramicModel**), assume Y=strength is independently and Normally distributed with constant variance and a mean that depends upon grit and direction (GD).

IMPORTANT: When asked to give the name of a group, use the short form in gd, such as 140:L.

					Aum			with any one.	
>	ceramic					_			
	-		-	direction				GD	gd
1	-1	-1	-1	-1	-1	680.45		140/170:long	
2	1	-1	-1	-1	-1	722.48	30	140/170:long	
3	-1	1	-1	-1	-1	702.14	14	.,	
4	1	1	-1	-1	-1	666.93	8	140/170:long	
5	-1	-1	1	-1	-1	703.67	32	80/100:long	80:L
6	1	-1	1	-1	-1	642.14	20	80/100:long	80:L
7	-1	1	1	-1	-1	692.98	26	80/100:long	80:L
8	1	1	1	-1	-1	669.26	24	80/100:long	80:L
9	-1	-1	-1	1	-1	491.58	10	140/170:tran	140:T
10) 1	-1	-1	1	-1	475.52	16	140/170:tran	140:T
11	1	1	-1	1	-1	478.76	27	140/170:tran	140:T
12	2 1	1	-1	1	-1	568.23	18	140/170:tran	140:T
13	-1	-1	1	1	-1	444.72	3	80/100:tran	80:T
14	- 1	-1	1	1	-1	410.37	19	80/100:tran	80:T
15	5 -1	1	1	1	-1	428.51	31	80/100:tran	80:T
16	5 1	1	1	1	-1	491.47	15	80/100:tran	80:T
17	-1	-1	-1	-1	1	607.34	12	140/170:long	140:L
18	1	-1	-1	-1	1	620.80	1	140/170:long	140:L
19	-1	1	-1	-1	1	610.55	4	140/170:long	140:L
20) 1	1	-1	-1	1	638.04	23	140/170:long	140:L
21	1	-1	1	-1	1	585.19	2	80/100:long	80:L
22	2 1	-1	1	-1	1	586.17	28	80/100:long	80:L
23	-1	1	1	-1	1	601.67	11	80/100:long	80:L
24	. 1	1	1	-1	1	608.31	9	80/100:long	80:L
25	1	-1	-1	1	1	442.90	25	140/170:tran	140:T
26	5 1	-1	-1	1	1	434.41	21	140/170:tran	
27	-1	1	-1	1	1	417.66	б	140/170:tran	140:T
28	1	1	-1	1	1	510.84	7	140/170:tran	
29	-1	-1	1	1	1	392.11	5	80/100:tran	80:T
30) 1	-1	1	1	1	343.22	13	80/100:tran	80:T
31	1	1	1	1	1	385.52	22	80/100:tran	80:Т
32	2 1	1	1	1	1	446.73	29	80/100:tran	80:T

PROBLEM SET #3 STATISTICS 500 FALL 2012: DATA PAGE 2 This is an exam. Do not discuss it with anyone.

Remark on question 3.6: The degrees of freedom between the four levels of GD may be partitioned into a main effect of G, a main effect of D, and an interaction or cross-product of G and D. You can do this with regression (grit, direction) or with contrasts.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Write your name and id number on **both sides** of the answer page. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

PROBLEM SET #3 STATISTICS 500 FALL 2012: ANSWER PAGE 1, answers This is an exam. Do not discuss it with anyone.

This is an exam. Do not discu	
Use FishMod to answer the questions in part 1.	Fill in/CIRCLE the Correct Answer
1.1 Consider all of the models that can be formed	
from FishMod by using subsets of variables,	10
including the model with 10 predictors and the	Number of models = $2^{10} = 1024$
model with no predictors. How many models are	
there?	
1.2 For the models in 1.1, what is the smallest	
value of C _P ? How many predictor variables are in	Smallest C_P : 8.51
this model? How many regression slope (beta)	
parameters are in this model, including the	predictors: 8 parameters: 9
constant as one parameter?	
1.3 For the 10 predictors in FishMod, list the	List of predictor names:
predictors that are NOT in the model in 1.2 with	Tuna Cod
the smallest C _P .	
1.4 Whenever any model in any problem is the	
submodel with the smallest C_P then by virtue of	
having the smallest C _P this model is estimated to	TRUE (FAHSE)
have all predictors with nonzero coefficients.	
1.5 The model identified in 1.2 clearly does NOT	
have all of the predictors with nonzero	
coefficients based on comparing the value of C _P	TRUE FAffSE
and the number of parameters in this model.	
1.6 Of the models mentioned in 1.1, the model	
identified in 1.2 (smallest C_P) also is the model	TRUE (FALSE)
with the largest R^2 .	
1.7 Comparing C_P values to the number of	
parameters in the model, there is a model with 4	
predictors that is estimated to have all of the	ff
predictors with nonzero coefficients, but the	TRUE FA ^{ff} se
model in 1.2 is estimated to predict y more	
accurately.	
1.8 Using the model with all 10 predictors, which	
one of the 10 predictors has the largest variance	Variable name: tfish
inflation factor (vif)? What is the value of this one	
vif? What is the R^2 of this variable with the other	vif: $3.03 R^2$: 0.67
9 predictors in the 10 predictor model?	
1.9 In the model in 1.2 (lowest C_P), a serving of	
breaded fish is estimated to be worse than a	
serving of fish unspecified by the variables in the	TRUE (FAHSE)
model, breaded fish being associated with extra	
mercury.	
 vif? What is the R² of this variable with the other 9 predictors in the 10 predictor model? 1.9 In the model in 1.2 (lowest C_P), a serving of breaded fish is estimated to be worse than a serving of fish unspecified by the variables in the 	

PROBLEM SET #2 STATISTICS 500 FALL 2012: ANSWER PAGE 2, answers 2. View the ceramic data in terms of a one-way analysis of variance with four groups

defined by GD. Fill in the following analysis of variance table.

Source of	Sum of Squares	Degrees of	Mean Square	F-statistic
variation		Freedom		
Between	330955	3	110318	51.6
Groups				
Within Groups	59845	28	2137	XXXXXXXX
(Residual)				XXXXXXXX

3. Use the ceramic data/CeramicModel to	Fill in or CIRCLE the correct answer
answer the questions in part 3.	
3.1 Use the anova table in part 2 to test the	
null hypothesis that the four groups do not	P-value: $1.56 \ge 10^{-11}$
differ. What is the P-value for the F-	
statistic? Is it plausible that the four groups	PLAUSIBLE 🔵 NOT PLAUSIBLE 🔵
do not differ?	
3.2 Four treatment groups defined by GD	
may be compared in pairs, group 1 to group	
2, group 1 to group 3, etc. How many	Number of comparisons: $4x3/2 = 6$
distinct comparisons are there of two	
groups? (Group 1 with 2 is the same	
comparison as group 2 with group 1).	
3.3 Use Tukey's method to perform all of	
the comparisons in 3.2 at an experiment-	80:T vs 140:T
wise error rate of 5%. List ALL	
comparisons that are NOT significant. (If	80:L vs 140:L
none, write none.) One possible	
comparison is "140:L vs 80:T".	
3.4 Use Holm's method to perform all of	
the comparisons in 3.2 at an experiment-	80:L vs 140:L
wise error rate of 5%. List ALL	
comparisons that are NOT significant. (If	
none, write none.) One possible	
comparison is "140:L vs 80:T".	
3.5 To say that the experiment-wise error	
rate is strongly controlled at 5% is to say	
that, no matter which groups truly differ,	(TRUE) FALSE
the chance of falsely declaring at least one	
pair of groups different is at most 5%.	
3.6 See remark on the data page. Test the	H_0 is:
null hypothesis H_0 that there is no	P-value: 0.234 Platfsible Not Plausible
interaction between grit and direction.	

```
Statistics 500, Problem Set 3, Fall 2012
                      Doing the Problem Set in R
Problem 1: fish
> X<-fish[,c(2,3,11,13,14,17,25,26,28,29)]</pre>
> y<-log2(fish$mercury)</pre>
> rfish<-leaps(x=X,y=y,names=colnames(X))</pre>
> which.min(rfish$Cp)
[1] 71
> rfish$size[71]
[1] 9
> rfish$Cp[71]
[1] 8.514598
> rfish$which[71,]
     age female
                       tfish
                              breaded
                                          tuna
                                                     cod
                                                             salmon
                                 TRUE
    TRUE
              TRUE
                       TRUE
                                          FALSE
                                                    FALSE
                                                               TRUE
 sardines
             shark swordfish
    TRUE
             TRUE
                       TRUE
1.8 Variance inflation factor
> library(DAAG)
> md1<-
lm(y~age+female+tfish+breaded+tuna+cod+salmon+sardines+shark+swordfish)
> vif(md1)
     age
            female
                      tfish breaded
                                          tuna
           1.0092
   1.0199
                     3.0295
                               1.0911
                                         1.7010
           salmon sardines
                                shark swordfish
     cod
                    1.1391
                                1.0096
   1.1187
           1.6189
                                         1.0402
> 1-(1/vif(md1))
                         tfish
                                      breaded
                female
       age
0.019511717 \ 0.009116132 \ 0.669912527 \ 0.083493722
                  cod salmon
      tuna
                                     sardines
0.412110523 0.106105301 0.382296621 0.122113950
     shark swordfish
0.009508716 0.038646414
Problem 2 and 3.1
> anova(lm(strength~GD))
Analysis of Variance Table
Response: strength
         Df Sum Sq Mean Sq F value Pr(>F)
GD
          3 330955 110318 51.615 1.565e-11 ***
Residuals 28 59845 2137
```

Statistics 500, Problem Set 3, Fall 2012 Doing the Problem Set in R, continued 3.3 > TukeyHSD(aov(strength~GD)) Tukey multiple comparisons of means 95% family-wise confidence level Fit: aov(formula = strength ~ GD)\$GD diff lwr upr p adj 140/170:tran-140/170:long -178.60375 -241.71667 -115.490825 0.0000001 80/100:long-140/170:long -19.91750 -83.03042 43.195425 0.8243531 80/100:tran-140/170:long -238.26000 -301.37292 -175.147075 0.0000000 80/100:long-140/170:tran 158.68625 95.57333 221.799175 0.0000011 80/100:tran-140/170:tran -59.65625 -122.76917 3.456675 0.0690593 80/100:tran-80/100:long -218.34250 -281.45542 -155.229575 0.0000000 Looking at the results for Tukey's test, one might think there is no effect of grit. If it's long vs long or tran vs tran, the pair comparison is not significant. 3.4 > pairwise.t.test(strength,gd) Pairwise comparisons using t tests with pooled SD data: strength and qd 140:L 140:T 80:L 140:T 8.2e-08 -_ 5.5e-07 -0.396 80:L 80**:**T 2.9e-10 0.031 1.7e-09 P value adjustment method: holm Notice that Holm's method found an additional difference, an effect of grit at direction tran. So grit matters after The Bonferroni method fails to find a grit effect, all. agreeing with Tukey's method. > pairwise.t.test(strength,gd,p.adjust.method="b") Pairwise comparisons using t tests with pooled SD data: strength and gd 140:L 140:T 80:L 140:T 1.2e-07 -80:L 1.000 1.1e-06 -80:T 2.9e-10 0.092 2.0e-09 P value adjustment method: bonferroni 3.5 > summary(aov(strength~grit*direction)) Pr(>F) Df Sum Sq Mean Sq F value grit 1 12664 12664 5.9251 0.02156 * direction 1 315133 315133 147.4420 1.127e-12 *** grit:direction 1 3158 3158 1.4777 0.23429 Residuals 28 59845 2137 You could also do this with t-tests in a regression model with interactions.

PROBLEM SET #1 STATISTICS 500 FALL 2013: DATA PAGE 1 Due in class at noon on Tuesday, October 22, 2013. This is an exam. Do not discuss it with anyone.

The data are from NHANES, the 1999-2000 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). The data describe people over age 60 who took a cognitive test; see below. The data are in a data.frame called "cogscore" with 1108 adults and 16 variables in the course workspace – you must download it again. A csv file, cogscore.csv, is available for those not using R:

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/

The list is case-sensitivity, so cogscore.csv is at the end, with the lower case files. The file is simplified in several ways; in particular, missing data have been removed.

cogsc cognitive test score (age>=60) (CFDRIGHT)
age in years
bmi body mass index
educ is 1-5 and is described in educf. (DMDEDUC2)
alcohol Alcohol consumed in grams (DRXTALCO)
caffeine Caffeine consumed in miligrams (DRXTCAFF)
lead is lead level in the blood (LBXBPB - Blood lead ug/dL)
cadmium is the cadmium level in the blood (LBXBCD - Blood cadmium ug/L)
smoke100life =1 if smoked 100 cigarettes in life, 0 otherwise (SMQ020)
smokenow Smoke now, explained in smokenowf (SMQ040)
cigsperday Cigarettes per day for people who smoke everyday (SMD070)
female = 1 for female, 0 for male
vigorous =1 if any vigorous physical activity in past 30 days, 0 otherwise (PAD200)
moderate =1 if any moderate physical activity in past 30 days, 0 otherwise (PAD320)

The cogscore is described by NHANES as follows:

"This section contains the results of a version of the WAIS III (Wechsler Adult Intelligence Scale, Third Edition) Digit Symbol – Coding module conducted during the household interview. The subtest was administered under a licensing agreement with The Psychological Corporation. In this coding exercise, participants copy symbols that are paired with numbers. Using the key provided at the top of the exercise form, the participant draws the symbol under the corresponding number. The score is the number of correct symbols drawn within a period of 120 seconds. One point is given for each correctly drawn symbol completed within the time limit. The maximum score is 133. Sample items are provided for initial practice. Participants who are unable to complete any of the sample items do not continue with the remainder of the exercise."

Starbucks web page indicates that a grande Pike's roast brewed coffee has 330 mg of caffeine.

The cogscore is described at <u>http://en.wikipedia.org/wiki/Digit_symbol_substitution_test</u>

PROBLEM SET #1 STATISTICS 500 FALL 2013: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due Tuesday, October 22, 2013.

Before you do anything else, plot the data in various ways. For example:

```
> attach(cogscore)

> boxplot(cogsc~educf)

> plot(age,cogsc)

> lines(lowess(age,cogsc))

> plot(lead,cogsc)

> lines(lowess(lead,cogsc))

Model #1

cogsc = \beta_0 + \beta_1 age + \beta_2 bmi + \beta_3 educ + \beta_4 alcohol + \beta_5 cigsperday + \epsilon where \epsilon

are iid N(0,\sigma^2)
```

```
Model #2

cogsc = \gamma_0 + \gamma_1 age + \gamma_2 educ + \gamma_3 lead + \gamma_4 caffeine + \eta where \eta are iid N(0,\omega^2)
```

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary.

It is often useful to put two plots next to each other on the same page so you can see the same point in both plots. If you type

```
> par(mfrow=c(1,2))
```

then the next two plots will appear on the same page, the first on the left, the second on the right. For example, you can compare a boxplot and a Normal quantile plot in this way. The command sets a graphics parameter (that's the 'par'), and it says that there should be 1 row of graphs with 2 columns, filling in the first row first. By setting graph parameters, you can control many aspects of a graph. The free document R for Beginners by Paradis (<u>http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf</u>) contains lots of useful information about graph parameters (see page 43).

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

	D#				
PROBLEM SET #1 STATISTICS 500 FALL 2013: ANSWER PAGE 1					
This is an exam. Do not discuss it with any					
Question (Part 1)	CIRCLE the correct answer.				
1.1 In the plot of cogsc (as y) against age					
(60-85 as x), the lowess curve increases	TRUE FALSE				
suggesting higher scores at older ages.					
1.2 Looking at alcohol consumption by the					
levels of education, the sample upper (3^{rd})					
quartile of alcohol consumption is highest	TRUE FALSE				
among individuals with a college degree.					
1.3 The sample median cogsc increases over					
the five levels of education.	TRUE FALSE				
1.4 Using Pearson (i.e. usual) correlation, it					
is correct to say that an individual who is a					
standard deviation above average on	TRUE FALSE				
education is expected to be more than half a					
standard deviation above average on cogsc.					
Tet model 1 for model data many liter it to					
Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.				
answer the questions in part 2 below					
2.1 Test the null hypothesis that H_0 :	Nama				
$\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ in model 1. Give the	Name: Value:				
name of the test, the numerical value of the	P-value:				
test statistics, the P-value, and indicate	Circle one:				
whether the null hypothesis is plausible.	PLAUSIBLE NOT PLAUSIBLE				
2.2 Test the null hypothesis that $H_0: \beta_2=0$ in	TEAUSIBLE NOTTEAUSIBLE				
model 1, that is, the coefficient of BMI. Give	Name: Value:				
the name of the test, the numerical value of	Tunie Value				
the test statistics, the P-value, and indicate	P-value:				
whether the null hypothesis is plausible.	Circle one:				
whether the null hypothesis is plausible.	PLAUSIBLE NOT PLAUSIBLE				
2.3 If four variables in a regression model					
have individual P-values above 0.10, then that	TRUE FALSE				
indicates it is reasonable to drop all four					
variables from the regression.					
2.4 Give the 95% confidence interval for β_3	۲ ا				
(the coefficient of educ) in Model #1.	L,]				
2.5 Do the Shapiro-Wilk test on the residuals					
from model 1. What is the P-value? Is it	P-value:				
plausible that the residuals are Normally	Circle one:				
distributed with constant variance?	PLAUSIBLE NOT PLAUSIBLE				

Name:	_ ID#
PROBLEM SET #1 STATISTICS 500) FALL 2013: ANSWER PAGE 2
This is an exam. Do not discuss it with any	yone. Due noon in class Tuesday 22 Oct.
Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.
answer question 3.	
3.1 In model 1, test the null hypothesis	
H ₀ : $\beta_4 = \beta_5 = 0$, that both alcohol and	Name: Value:
cigsperday have zero coefficients. What is	
the name of the test statistic? What is the	DF = (,) P-value:
numerical value of the test statistic? What	
are the degrees of freedom (DF)? What is	Circle one:
the P-value? Is the null hypothesis	PLAUSIBLE NOT PLAUSIBLE
plausible? (16 points)	
3.2 In a Normal linear model with five	
variables (like model 1), if H_0 : $\beta_4=0$ is not	
rejected at the 0.05 level and H ₀ : $\beta_5=0$ is not	TRUE FALSE
rejected at the 0.05 level, then H ₀ : $\beta_4 = \beta_5 = 0$	
will not be rejected at the 0.05 level.	
3.3 Use the added variable plot (Sheather	
section 6.1.3) to consider adding caffeine to	
model #1. Although the slope in this plot is	TRUE FALSE
tilted up, there is one person who looks	
unusual in terms of caffeine consumption, a	
69 year-old nonsmoking man, who consumed	
much more caffeine than most people.	

Fit model 2 and use it for part 4 below	Fill in or CIRCLE the correct answer.
4.1 Using a test of a general linear hypothesis	
(a partial F test), we can reject model 1 in	TRUE FALSE
favor of model 2 at the 0.05 level.	
4.2 If one boxplots the residuals from model	
2 by the five levels of education, the median	TRUE FALSE
residual for the middle HS/Ged group is	
slightly positive, while the medians for <9	
grade and college grad are slightly negative.	
4.3 The Normal quantile plot (and Shaprio-	
Wilk test) suggest that the residuals from	
model 2 are not Normal, with an upper tail	
that is too short for the Normal and a lower	TRUE FALSE
tail that is too long for the Normal – too	
many people have exceptionally low	
cognitive score residuals.	

Questions are 6 points each, except as noted.

PROBLEM SET #1 STATISTICS 500 FALL 2013: ANSWERS This is an exam. Do not discuss it with anyone.

I his is an exam. Do not discuss it with anyone.		
Question (Part 1) (6 points each)	CIRCLE the correct answer.	
1.1 In the plot of cogsc (as y) against age		
(60-85 as x), the lowess curve increases	TRUE FALSE	
suggesting higher scores at older ages.	The plot tilts down, not up.	
1.2 Looking at alcohol consumption by the		
levels of education, the sample upper (3^{rd})	\frown	
quartile of alcohol consumption is highest	TRUE FALSE	
among individuals with a college degree.		
1.3 The sample median cogsc increases over	\bigcirc	
the five levels of education.	TRUE FALSE	
1.4 Using Pearson (i.e. usual) correlation, it		
is correct to say that an individual who is a		
standard deviation above average on	(TRUE) FALSE	
education is expected to be more than half a		
standard deviation above average on cogsc.		
Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.	
answer the questions in part 2 below		
2.1 Test the null hypothesis that H ₀ : $\beta_1 = \beta_2 =$		
$\beta_{3} = \beta_{4} = \beta_{5} = 0$ in model 1. Give the name of	Name: F-test Value: 114.1	
the test, the numerical value of the test	P-value: 2.2×10^{-16}	
statistics, the P-value, and indicate whether	Circle one:	
the null hypothesis is plausible.	PLAUSIBLE NOT PLAUSIBLE	
2.2 Test the null hypothesis that H_0 : $\beta_2=0$ in		
model 1, that is, the coefficient of BMI. Give	Name: t-test Value: -0.806	
the name of the test, the numerical value of		
the test statistics, the P-value, and indicate	P-value: 0.42	
whether the null hypothesis is plausible.	Circle one:	
	Q LAUSIBLE NOT PLAUSIBLE	
2.3 If four variables in a regression model		
have individual P-values above 0.10, then that	TRUE FALSE	
indicates it is reasonable to drop all four	The t-test asks about one variable	
variables from the regression.	assuming you keep all the others.	
2.4 Give the 95% confidence interval for b_3	[7.10 , 8.47]	
(the coefficient of educ) in Model #1.		
2.5 Do the Shapiro-Wilk test on the residuals		
from model 1. What is the P-value? Is it	P-value: 3.2×10^{-6}	
plausible that the residuals are Normally	Circle one:	
distributed with constant variance?	PLAUSIBLE NOT PLAUSIBLE	

PROBLEM SET #1 STATISTICS 500 FALL 201: ANSWERS This is an exam. Do not discuss it with anyone.

Fit model 1 from the data page. Use it to	Fill in or CIRCLE the correct answer.
answer question 3.	
3.1 In model 1, test the null hypothesis	
$H_0: \beta_4 = \beta_5 = 0$, that both alcohol and	Name: F-test Value: 1.036
cigsperday have zero coefficients. What is	
the name of the test statistic? What is the	DF = (2, 1102) P-value: 0.355
numerical value of the test statistic? What	
are the degrees of freedom (DF)? What is	Circle one:
the P-value? Is the null hypothesis	PLAUSIBLE NOT PLAUSIBLE
plausible? (16 points)	
3.2 In a Normal linear model with five	TRUE FALSE
variables (like model 1), if H_0 : $\beta_4=0$ is not	This is the same issue as in question 2.3.
rejected at the 0.05 level and H_0 : $\beta_5=0$ is not	Because predictors are often correlated,
5	you may not need x_4 if you keep x_5 , and
rejected at the 0.05 level, then H ₀ : $\beta_4 = \beta_5 = 0$	you may not need x_5 if you keep x_5 , and
will not be rejected at the 0.05 level.	you may need to keep one of them.
3.3 Use the added variable plot (Sheather	
section 6.1.3) to consider adding caffeine to	
model #1. Although the slope in this plot is	TRUE FALSE
tilted up, there is one person who looks	INCE INLESE
unusual in terms of caffeine consumption, a	3067/330 = 9.3 grande Starbucks coffees
69 year-old nonsmoking man, who consumed	50077550 – 7.5 grande Starbueks conces
much more caffeine than most people.	
nden more carrenie than most people.	
Fit model 2 and use it for part 4 below	Fill in or CIRCLE the correct answer.
4.1 Using a test of a general linear hypothesis	TRUE FALSE
(a partial F test), we can reject model 1 in	A general linear hypothesis compares
favor of model 2 at the 0.05 level.	nested models, one simpler than the
	other. These two models are not nested.
4.2 If one boxplots the residuals from model	TRUE FALSE
1	This is true and it suggests that the
2 by the five levels of education, the median	00
residual for the middle HS/Ged group is	relationship between education and test
slightly positive, while the medians for <9	score is somewhat curved, not a line.
grade and college grad are slightly negative.	

The residuals are not Normal, but it is the upper tail that is thicker than Normal. Too many very high scores, not too many very low ones.

Questions are 6 points each, except as noted.

4.3 The Normal quantile plot (and Shaprio-Wilk test) suggest that the residuals from

model 2 are not Normal, with an upper tail

that is too short for the Normal and a lower tail that is too long for the Normal – too

many people have exceptionally low

cognitive score residuals.

```
Doing the Problem Set in R
               Problem 1, Fall 2013, Stat 500
Question 1.
1.1
> plot(age,cogsc)
> lines(lowess(age,cogsc))
(Goes down, not up.)
1.2
> boxplot(alcohol~educf)
1.3
> boxplot(cogsc~educf)
1.4
> cor(cogsc,educ)
[1] 0.543796
0.543796 > ½
Ouestion 2.
> mod1<-lm(cogsc~age+bmi+educ+alcohol+cigsperday)</pre>
> summary(mod1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 61.24402
                       5.91401 10.356 <2e-16 ***
                        0.06468 -8.591
                                          <2e-16 ***
age
            -0.55571
bmi
            -0.07426
                       0.09217 -0.806
                                          0.421
                        0.34835 22.341
                                          <2e-16 ***
educ
            7.78226
alcohol
            -0.02200
                        0.02946 -0.747
                                          0.455
ciqsperday -0.09343
                        0.08265 -1.131
                                           0.258
Residual standard error: 15.48 on 1102 degrees of freedom
Multiple R-squared: 0.341, Adjusted R-squared: 0.338
F-statistic: 114.1 on 5 and 1102 DF, p-value: < 2.2e-16
2.4
> confint(mod1)
                  2.5 %
                             97.5 %
(Intercept) 49.64001788 72.84801685
aqe
            -0.68263302 -0.42879445
bmi
           -0.25510106 0.10658373
educ
            7.09876314 8.46575698
alcohol
            -0.07980479 0.03579602
cigsperday -0.25559409 0.06872682
2.5
> shapiro.test(mod1$residual)
        Shapiro-Wilk normality test
data: mod1$residual
W = 0.9911, p-value = 3.225e-06
Ouestion 3:
3.1 General linear hypothesis
```

```
> modred<-lm(cogsc~age+bmi+educ)</pre>
> anova(modred,mod1)
Analysis of Variance Table
Model 1: cogsc ~ age + bmi + educ
Model 2: cogsc ~ age + bmi + educ + alcohol + cigsperday
           RSS Df Sum of Sq F Pr(>F)
 Res.Df
    1104 264593
1
    1102 264096 2 496.78 1.0365 0.355
2
3.3 Added variable plot (use addedvarplot or do it
vourself)
> addedvarplot(mod1,caffeine)
> modc<-lm(caffeine~age+bmi+educ+alcohol+cigsperday)</pre>
> plot(modc$resid,mod1$resid)
> which.max(modc$resid)
1002
> cogscore[1002,]
     cogsc age bmi educ educf alcohol caffeine lead
        18 69 20.41
                     1 <9th 0
                                          3066.8
1282
                                                    3
     cadmium smoke100life smokenow cigsperday female
1282
         1.2
                        1
                                 3
                                            0
                                                   0
     smokenowf vigorous moderate
1282
            No
                      0
                               0
> summary(caffeine)
   Min. 1st Qu. Median Mean 3rd Qu.
                                           Max.
   0.00
         9.82 102.70 167.90 251.60 3067.00
Question 4
4.1 The general linear hypothesis (or partial F-test)
compares two models, one nested within the other.
                                                   The
reduced or simpler model must contain all the variables in
the full or more complex model. Models 1 and 2 are not
related in this way, so they cannot be compared by the
partial F-test.
4.2
> boxplot(mod2$resid~educf)
> abline(h=0)
4.3
> par(mfrow=c(1,2))
> boxplot(mod2$resid)
> qqnorm(mod2$resid)
> qqline(mod2$resid)
> shapiro.test(mod2$resid)
        Shapiro-Wilk normality test
W = 0.9904, p-value = 1.198e-06
```

PROBLEM SET #2 STATISTICS 500 FALL 2013: DATA PAGE 1 Due in class at noon on Tuesday 26 November 2013 noon in class. This is an exam. Do not discuss it with anyone.

The data are from the Wisconsin Longitudinal Study

(<u>http://www.ssc.wisc.edu/wlsresearch/</u>) and they simplify a study by Springer et al. (2007) relating adult anger to abuse by parents as a child. The Study interviewed adults and asked about their childhoods. The data are in the object abuse500 in the R workspace for the course:

http://www-stat.wharton.upenn.edu/~rosenbap/index.html. You will need to download it again. If you cannot find abuse500, it probably means you need to clear your browser's cache and download again. If you are not using R, then there is a csv file called abuse500.csv at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ The list is case-sensitivity, so cogscore.csv is at the end, with the lower case files. The file is simplified in several ways; in particular, missing data have been removed.

The anger score is based on structured questions due to Speilberger (1996). Higher scores mean more anger. Abuse is based on two questions: "During the first 16 years of your life, how much did your father/mother slap, shove or throw things at you?" The study by Springer et al. (2007) does not address some important practical questions, such as the accuracy of adult statements about childhood events, but these practical questions are not part of the current problem set.

id id number from the Wisconsin Longitudinal Study
anger Score on Speilberger (1996) anger scale. (nua34rec)
Fabuse 1 means Father was abusive – (nw036rer)
Mabuse 1 means Father was abusive – (nw037rer)
female 1 means respondent is female, 0 means male
age age of respondent (sa029re)
siblings respondent's number of siblings (sibstt)
Feducation years of education of respondent's father (edfa57q)
Meducation years of education of respondent's mother (edmo57q)

When asked to identify a person in the data set, please use the row number (or rownames(abuse500), 1, 2, ..., 2841. Please do not use id.

Part 4 has three questions that ask you to expand model 2. When answering question 4.1, you add some things. When answering question 4.2 you add other things. Do not fit a model with both the things for 4.1 and the things for 4.2 - do these two questions separately.

PROBLEM SET #2 STATISTICS 500 FALL 2013: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due in class at noon on 26 November 2013 noon in class.

Before you do anything else, plot the data in various ways. For example:

```
> attach(abuse500)

> boxplot(anger~factor(Fabuse):factor(Mabuse))

> plot(age,anger)

> lines(lowess(age,anger),col="red")

Model #1

anger = \beta_0 + \beta_1Fabuse + \beta_2 Mabuse + \beta_3 female + \beta_4 age + \beta_5 siblings
```

 $+\beta_6 \text{ Feducation} + +\beta_5 \text{ Meducation} + \epsilon \text{ where } \epsilon \text{ are iid } N(0,\sigma^2)$

Calculate the log-base-2 of anger+1. (You cannot take the log of 0.) > L2anger<-log2(anger+1)

Model #2

L2anger = $\gamma_0 + \gamma_1$ Fabuse + γ_2 Mabuse + γ_3 female + γ_4 age + γ_5 siblings + γ_6 Feducation + γ_5 Meducation + η where η are iid N(0, ω^2)

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary.

Spielberger, C. D. (1996), State-Trait Anger Expression Inventory Professional Manual. Odessa, FL: Psychological Assessment Resources.

Springer, K. W., Sheridan, J., Kuo, D., and Carnes, M. (2007), "Long term physical and mental health consequences of childhood physical abuse," Child Abuse and Neglect, 31, 517-530.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Name (last, first):	ID#	
	00 FALL 2013: ANSWER PAGE 1	
	anyone. Due noon in class 26 November.	
Part 1: Use model 1 for part 1.	Fill in or CIRCLE the correct answer	
Looking at the Normal quantile plot, the	1.1	
residuals from model 1 do not look like	TRUE FALSE	
observations from a Normal distribution:		
they are asymmetric with a long right tail.		
The largest absolute studentized residual	1.2	
from model 1 is about 7.405 for an	TRUE FALSE	
individual with anger score of 70.		
Test the null hypothesis that there are no	1.3	
outliers in model 1. Do a 2-sided test for		
each residual adjusting using the	Degrees of freedom:	
Bonferroni inequality to obtain a		
familywise error rate of 0.05. In the t-	Critical t-value:	
distribution, what are the degrees of		
freedom? What is the critical value, that is,	CIRCLE ONE	
the absolute t-value just significant as an		
outlier? This critical value is a property of	YES OUTLIER(S) NO OUTLIERS	
the t-distribution, and depends upon the		
data only through the sample size and the		
number of predictors in the model. By this		
standard, is their at least one outlier?		
Using the method in question 1.3, how	1.4	
many individuals would be judged outliers?	#outliers:	
Of these outliers, if any, how many are		
above/below the fitted regression?	<pre>#outliers above: #below:</pre>	
In light of what you have discovered in	1.5	
questions 1.1-1.4, it is reasonable to think		
of the assumption of Normal errors in in	TRUE FALSE	
model 1 as almost true apart from perhaps a		
few (<=3) outliers that should be removed		
before working further with model 1.		
Part 2: Use models 1 and 2 from the data	Fill in or CIRCLE the correct answer	
page for the questions in part 2.	Identify individuals by row of abuse500	
Repeat the method in questions 1.3 and 1.4	2.1	
for model 2, stating the number of outliers	#outliers:	
detected, above and below the regression		
plane.	<pre>#outliers above: #below:</pre>	
Which individual has the largest leverage	2.2	
or hat-value for model 1? For model 2?	Model 1: Model 2:	
The person identified in 2.2 for model 2	2.3	
has large leverage because he is angry and	TRUE FALSE	
his father had an unusual Feducation		

Name (last, first):	ID#	
PROBLEM SET #2 STATISTICS 5	00 FALL 2013: ANSWER PAGE 2	
This is an exam. Do not discuss it with	anyone. Due noon in class 26 November.	
Part 3: Use model 2 from the data page for	Fill in or CIRCLE the correct answer	
the questions in part 3.	Identify individuals by row of abuse500	
In model 2, which observation has the	3.1	
largest absolute dffits? In model 2, which	Which for dffits :	
observation has the largest Cook's		
distance?	Which for Cook's distance:	
The individual identified in 3.1 with the	3.2	
largest absolute dffits is below the	TRUE FALSE	
regression plane pulling it down by half of		
the standard deviation of his/her fitted Y.		
Looking at dfbetas, the individual	3.3	
identified in 3.1 with the largest absolute		
dffits is having his biggest impact on the	TRUE FALSE	
estimate coefficient of "siblings" pulling		
that coefficient upwards.		
Part 4: Part 4 asks you to start with model	Fill in or CIRCLE the correct answer	
2 and add things to it. So Y should be	Read about part 4 on the data page!	
L2anger, not anger.		
One might imagine that abuse by both	4.1	
father and mother might be associated with		
much greater anger than the sum of the two	t-statistic: P-value:	
parts. In model 2, test the null hypothesis	Circle one:	
H ₀ that there is no interaction between		
Fabuse and Mabuse. Give the t-statistic	PLAUSIBLE NOT PLAUSIBLE	
and P-value testing H_0 , and say whether H_0		
is plausible. How many people had both	How many:	
Fabuse=1 and Mabuse=1? (8 points)		
In model 2, test the null hypothesis H_0 that	4.2	
the relationship between anger and age is	t-statistic: P-value:	
linear against the alternative hypothesis	Circle one:	
that it is quadratic. Give the t-statistic and		
P-value testing H_0 , and say whether H_0 is	PLAUSIBLE NOT PLAUSIBLE	
plausible. (8 points)		
Use Tukey's one degree of freedom test,	4.3	
tukey1df, to test the null hypothesis H_0 that	t-statistic: P-value:	
the transformation to logs in model 2 is ok	Circle one:	
and further transformation is not needed.		
Give the t-statistic and P-value testing H_0 ,	PLAUSIBLE NOT PLAUSIBLE	
and say whether H_0 is plausible.		

Questions are 7 points each except as noted (4.1 and 4.2)

PROBLEM SET #2 STATISTICS 500 FALL 2013: ANSWER PAGE 1		
Part 1: Use model 1 for part 1.	Fill in or CIRCLE the correct answer	
Looking at the Normal quantile plot, the	1.1	
residuals from model 1 do not look like	(TRUE) FALSE	
observations from a Normal distribution:		
they are asymmetric with a long right tail.		
The largest absolute studentized residual	1.2	
from model 1 is about 7.405 for an	TRUE FALSE	
individual with anger score of 70.		
Test the null hypothesis that there are no	1.3	
outliers in model 1. Do a 2-sided test for		
each residual adjusting using the	Degrees of freedom: $2832 = 2833-1$	
Bonferroni inequality to obtain a		
familywise error rate of 0.05. In the t-	Critical t-value: 4.30	
distribution, what are the degrees of		
freedom? What is the critical value, that is,	CIRCLE ONE	
the absolute t-value just significant as an		
outlier? This critical value is a property of	YES OUTLIER(S) NO OUTLIERS	
the t-distribution, and depends upon the		
data only through the sample size and the		
number of predictors in the model. By this		
standard, is their at least one outlier?		
Using the method in question 1.3, how	1.4	
many individuals would be judged outliers?	#outliers: 19	
Of these outliers, if any, how many are		
above/below the fitted regression?	#outliers above: 19 #below: 0	
In light of what you have discovered in	1.5	
questions 1.1-1.4, it is reasonable to think	\frown	
of the assumption of Normal errors in in	TRUE (FALSE)	
model 1 as almost true apart from perhaps a		
few (<=3) outliers that should be removed		
before working further with model 1.		
Part 2: Use models 1 and 2 from the data	Fill in or CIRCLE the correct answer	
page for the questions in part 2.	Identify individuals by row of abuse500	
Repeat the method in questions 1.3 and 1.4	2.1	
for model 2, stating the number of outliers	#outliers: 0	
detected shows and helow the regression	1 1	

PROBLEM SET	#2 STATISTICS	500 FALL 2013:	ANSWER PAGE 1

Part 2: Use models 1 and 2 from the data	Fill in or CIRCLE the correct answer
page for the questions in part 2.	Identify individuals by row of abuse500
Repeat the method in questions 1.3 and 1.4	2.1
for model 2, stating the number of outliers	#outliers: 0
detected, above and below the regression	
plane.	#outliers above: 0 #below: 0
Which individual has the largest leverage	2.2 Same person because x did not change
or hat-value for model 1? For model 2?	Model 1: 824 Model 2: 824
The person identified in 2.2 for model 2	2.3 Leverage depends on x, not y.
has large leverage because he is angry and	TRUE FALSE
his father had an unusual Feducation	

Part 3: Use model 2 from the data page for the questions in part 3.Fill in or CIRCLE the correct answer Identify individuals by row of abuse500In model 2, which observation has the largest absolute dffits? In model 2, which observation has the largest Cook's distance?3.1The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.2Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis Hq that there is no interaction between Fabuse=1 and Mabuse=1? (8 points)Fill in or CIRCLE the correct answer Read about part 4 on the data page!Hausel=1 and Mabuse=1? (8 points)4.2In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing Hq, and say whether Hq is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis Hq that that transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and say whether Hq is plausible.4.3Use Tukey's	PROBLEM SET #2 STATISTICS 500 FALL 2013: ANSWER PAGE 2		
In model 2, which observation has the largest absolute dffits? In model 2, which observation has the largest Cook's3.1Winch for Cook's distance: 824 Which for Cook's distance: 824 Two very similar measures.Which for Cook's distance: 824 Which for Cook's distance: 824 Which for Cook's distance: 824 Two very similar measures.The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.3 A fairly angry guy with lots of siblings TRUEPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Sill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both fabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (By points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (By points)4.2Use Tukey's one degree of freedom test, tukey Idf, to test the null hypothesis H0 that further transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (B points)4.3Use Tukey's one degree of freedom test, tukey Idf, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0, or matel 2	Part 3: Use model 2 from the data page for	Fill in or CIRCLE the correct answer	
largest absolute dffits? In model 2, which observation has the largest Cook's distance?Which for [dffits]: 824 Which for Cook's distance: 824 Two very similar measures.The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.2 TRUE FALSEPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Sill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis Hq that there is no interaction between Fabuse=1 and Mabuse=1? (8 points)Fill in or CIRCLE the correct answer Read about part 4 on the data page!In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing Hq, and say whether Hq is plausible. (8 points)4.2 t-statistic: 1.565P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukeyldf, to test the null hypothesis Hq that the transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation is nor needed. Give the t-statistic and P-value testing Hq, on the greater of freedom test, tukeyldf, to test the null hypothesis Hq that the ransformation to logs in model 2 is ok and further transformation is nor needed. Give the t-statistic and P-value testing Hq.4.3 t-statistic: 1.219	the questions in part 3.	Identify individuals by row of abuse500	
observation has the largest Cook's distance?Which for Cook's distance: 824 Two very similar measures.The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y.3.2 TRUE FALSE He is about a quarter standard deviation above, not half standard deviation below.Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.3 A fairly angry guy with lots of siblingsPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page! L3.1One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis Hq hat there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing Hq, and say whether Hq is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1 t-statistic: 1.565 P-value: 0.1177 Circle one:In model 2, test the null hypothesis Hq that it is quadratic. Give the t-statistic and P-value testing Hq, and say whether Hq is plausible. (8 points)4.2 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukeyldf, to test the null hypothesis Hq that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing Hq, and say whether Hq is plausible. (8 points)4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	In model 2, which observation has the	3.1	
distance?Two very similar measures.The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y.3.2Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.3 A fairly angry guy with lots of siblingsPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H that there is no interaction between Fabuse =1 and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:In model 2, test the null hypothesis Hat it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2 t-statistic: 1.219 P-value: 0.223 tircle one:Use Tukey's one degree of freedom test, tukeyldf, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok an	largest absolute dffits? In model 2, which	Which for dffits : 824	
The individual identified in 3.1 with the largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y.3.2 TRUEFALSE He is about a quarter standard deviation above, not half standard deviation below.Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.3 A fairly angry guy with lots of siblings impact on the estimated coefficient of "siblings" pulling that coefficient upwards.Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2 t.	observation has the largest Cook's	Which for Cook's distance: 824	
largest absolute dffits is below the regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.TRUE FALSEFALSEPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.3.3 A fairly angry guy with lots of siblings TRUE5.3 A fairly angry guy with lots of siblingsOne might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukeyl df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ , and surve the t-statistic and P-value testing H ₀ , and surve the t-statistic and P-value testing H ₀ , or plausible. (8 points)4.3 t-statistic: 1.219 P-value: 0.223 transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ , or plausible.4.3 t-statistic: 1.219 P-value: 0.223 <td>distance?</td> <td>Two very similar measures.</td>	distance?	Two very similar measures.	
regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards. Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger. One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points) In model 2, test the null hypothesis H ₀ that age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points) Use Tukey's one degree of freedom test, tukeyl df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ , and suppressing H ₀ , to test the null hypothesis H ₀ that the transformation is not needed. Give the t-statistic and P-value testing H ₀ .	The individual identified in 3.1 with the	3.2	
regression plane pulling it down by half of the standard deviation of his/her fitted Y. Looking at dfbetas, the individual identified in 3.1 with the largest absolute dfftts is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards. Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger. One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points) In model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points) Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ .	largest absolute dffits is below the	TRUE FALSE	
Looking at dfbetas, the individual identified in 3.1 with the largest absolute dffits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.3.3 A fairly angry guy with lots of siblingsPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Sill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis rabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2In wole 12, to set the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0, on the testing H0, on the testing H0, on the testing H0, on the testing H0, the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0, on the tes	regression plane pulling it down by half of	He is about a quarter standard deviation	
identified in 3.1 with the largest absolute dfits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.TRUEFALSEPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2In sequence to the statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 the t-statistic and P-value testing H0,4.3LausiBLE to the t-statistic and P-value testing H0,4.3LausiBLE to test the null hypothesis H0 that the transformation is not needed. Give	the standard deviation of his/her fitted Y.	above, not half standard deviation below.	
identified in 3.1 with the largest absolute dfits is having his biggest impact on the estimated coefficient of "siblings" pulling that coefficient upwards.TRUEFALSEPart 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2In sequence to the statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 the t-statistic and P-value testing H0,4.3LausiBLE to the t-statistic and P-value testing H0,4.3LausiBLE to test the null hypothesis H0 that the transformation is not needed. Give	Looking at dfbetas, the individual	3.3 A fairly angry guy with lots of siblings	
estimated coefficient of "siblings" pulling that coefficient upwards.Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis H0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukeyldf, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:			
estimated coefficient of "siblings" pulling that coefficient upwards.Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2In squaratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Circle one:4.3Lukey's one degree of freedom test, and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Circle one:4.3Circle one: <t< td=""><td>dffits is having his biggest impact on the</td><td>TRUE FALSE</td></t<>	dffits is having his biggest impact on the	TRUE FALSE	
that coefficient upwards.Part 4: Part 4 asks you to start with model 2 and add things to it. So Y should be L2anger, not anger.Fill in or CIRCLE the correct answer Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ , or the t-statistic and P-value testing H ₀ , to test the null hypothesis H ₀ that the transformation is not needed. Give the t-statistic and P-value testing H ₀ , or the t-statistic and P-value testing H ₀ , tukey1df, to test the null hypothesis H ₀ that the transformation is not needed. Give the t-statistic and P-value testing H ₀ , or the cols in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 to TPLAUSIBLE			
2 and add things to it. So Y should be L2anger, not anger.Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H_0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2In set calculation that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0, the transformation is not needed. Give the t-statistic and P-value testing H_0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0,4.3	that coefficient upwards.		
2 and add things to it. So Y should be L2anger, not anger.Read about part 4 on the data page!One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H_0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2In set calculation that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0, the transformation is not needed. Give the t-statistic and P-value testing H_0,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0,4.3			
L2anger, not anger.Image is that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H_0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2t-statistic: 1.565 P-value: 0.1177 Circle one:In model 2, test the null hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0, and say whether H_0 is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0, the transformation is not needed. Give the t-statistic and P-value testing H_0,4.3	Part 4: Part 4 asks you to start with model	Fill in or CIRCLE the correct answer	
One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3	2 and add things to it. So Y should be	Read about part 4 on the data page!	
One might imagine that abuse by both father and mother might be associated with much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)4.1In model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3	L2anger, not anger.		
much greater anger than the sum of the two parts. In model 2, test the null hypothesis H ₀ that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)t-statistic: -0.052 Circle one:P-value: 0.96 Circle one:In model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	One might imagine that abuse by both	4.1	
parts. In model 2, test the null hypothesis H_0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H_0 , and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)Circle one:In model 2, test the null hypothesis H_0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0 , and say whether H_0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0 , due testing H_0 , value testing H_0 , the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0 , the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0 ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	father and mother might be associated with		
H_0 that there is no interaction between Fabuse and Mabuse. Give the t-statistic and P-value testing H_0 , and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)PLAUSIBLENOT PLAUSIBLEIn model 2, test the null hypothesis H_0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0 , and say whether H_0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0 ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	much greater anger than the sum of the two	t-statistic: -0.052 P-value: 0.96	
Fabuse and Mabuse. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)PLAUSIBLENOT PLAUSIBLEIn model 2, test the null hypothesis H ₀ that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	parts. In model 2, test the null hypothesis	Circle one:	
and P-value testing H_0 , and say whether H_0 is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)How many: 93In model 2, test the null hypothesis H_0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H_0 , and say whether H_0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H_0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H_0 ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	H ₀ that there is no interaction between		
is plausible. How many people had both Fabuse=1 and Mabuse=1? (8 points)How many: 93In model 2, test the null hypothesis H0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	Fabuse and Mabuse. Give the t-statistic	(PLAUSIBLE) NOT PLAUSIBLE	
Fabuse=1 and Mabuse=1? (8 points)In model 2, test the null hypothesis H0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	and P-value testing H_0 , and say whether H_0		
In model 2, test the null hypothesis H0 that the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H0, and say whether H0 is plausible. (8 points)4.2 t-statistic: 1.565 P-value: 0.1177 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.2Use Tukey's One degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3Use Tukey NOT PLAUSIBLEUse Tukey NOT PLAUSIBLE		How many: 93	
 the relationship between anger and age is linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H₀, and say whether H₀ is plausible. (8 points) Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H₀, t-statistic: 1.565 P-value: 0.1177 Circle one: VISE TUKEY'S ONE degree of freedom test, tukey1df, to test the null hypothesis H₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H₀, t-statistic: 1.565 P-value: 0.1177 Circle one: VISE TUKEY'S ONE degree of freedom test, tukey1df, to test the null hypothesis H₀ that the transformation is not needed. Give the t-statistic and P-value testing H₀, t-statistic: 1.219 P-value: 0.223 Circle one: VISE TUKEY'S ONE DEGREE NOT PLAUSIBLE 	-		
linear against the alternative hypothesis that it is quadratic. Give the t-statistic and P-value testing H ₀ , and say whether H ₀ is plausible. (8 points)Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H ₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ ,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	, , , , , , , , , , , , , , , , , , , 		
 that it is quadratic. Give the t-statistic and P-value testing H₀, and say whether H₀ is plausible. (8 points) Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H₀, Hat it is quadratic. Give the t-statistic and P-value testing H₀, Hat it is quadratic. Give the t-statistic and P-value testing H₀, Hat it is quadratic. Give the t-statistic and P-value testing H₀, Hat it is quadratic. Give the t-statistic and P-value testing H₀, Hat is quadratic. Give the t-statistic and P-value testing H₀, Hat is quadratic to the total testing H₀, Hat is quadratic testing H₀, 	the relationship between anger and age is	t-statistic: 1.565 P-value: 0.1177	
 P-value testing H₀, and say whether H₀ is plausible. (8 points) Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H₀ that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H₀, PLAUSIBLE NOT PLAUSIBLE VOT PLAUSIBLE NOT PLAUSIBLE 	• • •	Circle one:	
plausible. (8 points)4.3Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	-		
Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:Use Tukey's one degree of freedom test, tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,4.3 t-statistic: 1.219 P-value: 0.223 Circle one:	.	(PLAUSIBLE) NOT PLAUSIBLE	
tukey1df, to test the null hypothesis H0 that the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H0,t-statistic: 1.219 Circle one: P-value: 0.223 Circle one:Understand ConstructionExample 1000000000000000000000000000000000000			
the transformation to logs in model 2 is ok and further transformation is not needed. Give the t-statistic and P-value testing H ₀ , Circle one: NOT PLAUSIBLE			
and further transformation is not needed. Give the t-statistic and P-value testing H_0 , PLAUSIBLE NOT PLAUSIBLE			
Give the t-statistic and P-value testing H_0 , QLAUSIBLE NOT PLAUSIBLE	e	Circle one:	
and say whether H_0 is plausible.	•	PLAUSIBLE NOT PLAUSIBLE	
	and say whether H_0 is plausible.		

PROBLEM SET #2 STATISTICS 500 FALL 2013: ANSWER PAGE 2

```
Doing the Problem Set in R: Problem 2, Fall 2013, Stat 500
Part 1.
> mod<-lm(anger ~ Fabuse + Mabuse + female + age + siblings +</pre>
     Feducation + Meducation)
1.1
> qqnorm(mod$resid)
> hist(mod$resid)
> boxplot(mod$resid)
1.2
> which.max(abs(rstudent(mod)))
2839
2839
> rstudent(mod)[2839]
   2839
7.404952
> abuse500[2839,]
         id anger Fabuse Mabuse female age siblings Feducation Meducation
              70
2839 933941
                    0 0 0 48
                                             б
                                                          14
                                                                      18
1.3
> dim(abuse500)
[1] 2841
          9
> mod$df
[1] 2833
> qt(.025/2841,2832)
[1] -4.30073
1.4
> sum(rstudent(mod)>=4.30073)
[1] 19
> sum(rstudent(mod)<=-4.30073)</pre>
[1] 0
2.1
> l2anger<-log2(anger+1)</pre>
> modl<-lm(l2anger~Fabuse+Mabuse+female+age+siblings+Feducation+Meducation)</pre>
> qqnorm(rstudent(modl))
> sum(rstudent(modl)>=4.30073)
[1] 0
> sum(rstudent(modl)<=-4.30073)</pre>
[1] 0
2.2
> which.max(hatvalues(modl))
824
824
> which.max(hatvalues(mod))
824
824
Of course, they are the same, because taking logs changed y, not x, and
leverages or hatvalues are determined by the x's.
> abuse500[824,]
           id anger Fabuse Mabuse female age siblings Feducation Meducation
     Х
824 824 909671 14 0 0 0 62 26
                                                         12
                                                                          7
Twenty-six siblings! Leverage depends on x, not y.
```

```
Doing the Problem Set in R, continued: Problem 2, Fall 2013, Stat 500
3.1
> which.max(abs(dffits(modl)))
824
824
We've seen him before.
> which.max(cooks.distance(modl))
824
824
dffits and Cook's distance are very similar!
3.2
> max(dffits(modl))
[1] 0.249942
> min(dffits(modl))
[1] -0.2265019
> round(dfbetas(modl)[824,],2)
Fabuse
         Mabus female age siblings Feducation Meducation
                          0.03
-0.02
       0.00 -0.02
                                       0.24
                                                0.06
                                                               -0.01
4.1
> table(Fabuse,Mabuse)
     Mabuse
Fabuse 0
              1
     0 2490 111
     1 147 93
> int<-Fabuse*Mabuse</pre>
> sum(int)
[1] 93
> modli<-</pre>
lm(l2anger~Fabuse+Mabuse+female+age+siblings+Feducation+Meducation+int)
> summary(modli)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.334622 0.244131 21.851 <2e-16 ***
            0.250927 0.119624 2.098 0.0360 *
Fabuse
           -0.011979
                       0.231484 -0.052
int
                                           0.9587
4.2 Remember to center before squaring.
> age2c<-(age-mean(age))^2</pre>
> modlq<-
lm(l2anger~Fabuse+Mabuse+female+age+siblings+Feducation+Meducation+age2c)
> summary(modlq)
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.3206203 0.2441803 21.790 <2e-16 ***
           0.2579148 0.1028093 2.509
                                            0.0122 *
Fabuse
. . .
Meducation -0.0045446 0.0103519 -0.439
                                            0.6607
           0.0005629 0.0003597 1.565
aqe2c
                                            0.1177
4.3
> tldf<-tukeyldf(modl)</pre>
> modlt<-</pre>
lm(l2anger~Fabuse+Mabuse+female+age+siblings+Feducation+Meducation+tldf)
> summary(modlt)
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.328745 0.244104 21.830 < 2e-16 ***
                       0.102621
                                  2.413 0.01587 *
Fabuse
             0.247670
. . .
Meducation -0.004600
                      0.010359 -0.444 0.65704
             0.586381 \quad 0.481214 \quad \underline{1.219} \quad \underline{0.22312}
t.1df
```

PROBLEM SET #3 STATISTICS 500 FALL 2013: DATA PAGE 1 Due at noon on Wednesday, 18 December 2013, my office 473 JMHH. This is an exam. Do not discuss it with anyone.

The cogscore data are the same as in the first problem set, but the IBS data will need to be downloaded. The cogscore data from NHANES describe people over age 60 who took a cognitive test; see below. The data are in a data.frame in the course workspace called "cogscore". A csv file, cogscore.csv, is available for those not using R: http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ Do not use the csv file if you are using R. **cogsc** cognitive test score (age>=60) (CFDRIGHT) age in years **bmi** body mass index educ is 1-5 and is described in educf. (DMDEDUC2) **alcohol** Alcohol consumed in grams (DRXTALCO) caffeine Caffeine consumed in miligrams (DRXTCAFF) **lead** is lead level in the blood (LBXBPB - Blood lead ug/dL) **cadmium** is the cadmium level in the blood (LBXBCD - Blood cadmium ug/L) **smoke100life** =1 if smoked 100 cigarettes in life, 0 otherwise (SMQ020) smokenow Smoke now, explained in smokenowf (SMQ040) **cigsperday** Cigarettes per day for people who smoke everyday (SMD070) **female** = 1 for female, 0 for male **vigorous** =1 if any vigorous physical activity in past 30 days, 0 otherwise (PAD200) **moderate** =1 if any moderate physical activity in past 30 days, 0 otherwise (PAD320) The cogscore is a version of "WAIS III (Wechsler Adult Intelligence Scale, Third Edition) Digit Symbol – Coding module conducted during the household interview."

You will be doing a cross-validated variable selection. Typically, this would be a random half of the data, but you will NOT use a random half. So that everyone uses the same half, you will build the model using the first 554 rows of data (x1, y2) and validate using the remaining 554 rows (x2, y2). Do this as follows:

```
> dim(cogscore)
[1] 1108 16
> 1108/2
[1] 554
> x<-cogscore[,c(2,3,4,6,12,13,15,16)]
> head(x)
   age bmi educ alcohol cigsperday female vigorous moderate
3 62 36.94 3 0.0 0 0 0 0 0
> x1<-x[1:554,]
> y1<- cogscore$cogsc[1:554]
> x2<-x[555:1108,]
> y2<- cogscore$cogsc[555:1108]</pre>
```

Important note for parts 1&2: For part 1 questions, use leaps (best subsets regression) to predict y1 from x1. For part 2 questions, use lm (regression) to relate y2 to x2 using the variables selected in part 1. Note that the predictors are: age bmi educ alcohol cigsperday female vigorous moderate

PROBLEM SET #3 STATISTICS 500 FALL 2013: DATA PAGE 2 Due at noon on Wednesday, 18 December 2013, my office 473 JMHH.

The second data set is the object IBS in the course workspace or IBS.csv at http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ You will need to download the course workspace again. There is a csv file IBS.csv for those not using R; see web page on data page 1. Data are from a clinical trial of a drug intended to reduce the abdominal pain associated with irritable bowel syndrome (IBS). The data are from a paper by E. Biesheuvel andand L. Hothorn (2002) in the *Biometrical Journal* 44, 101-116, but there is no need to consult the paper unless you want to. I removed a few people to make a balanced design, so use IBS.

There are 70 people in each of five dose groups, one of which is a placebo (zero dose). The doses were blinded. The dose groups are 0, 1, 2, 3, 4. The outcome is iapain, a measure of improvement in abdominal pain from baseline, with larger numbers indicating greater improvement (good) and negative numbers indicating that a person got worse, not better, under the drug or placebo (bad). The dose is given as a number and as a factor (dose, dosef). There is an indicator of gender (1=female, 0=male). R handles numbers and factors differently, so you should think about when to use dose vs dosef.

dose dosef female iapain 1 0 Placebo 1 1.26153846

```
> dim(IBS)
```

```
[1] 350 4
```

There are five groups, i=0,1,2,3,4 and seventy people in group i, j=1,2,...,70. The model for the IBS data is y_{ij} =iapain score for the jth person in group I, with $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$ where the errors ε_{ij} are independent, identically distributed (iid) with Normal distributions having mean 0 and variance σ^2 . **IMPORTANT**: When referring to pairs of groups in **questions 3.2 and 3.5**, refer to them by number, so 0-1 is placebo vs verylow dose. Remember, the groups are numbered 0, 1, 2, 3, 4, NOT 1, 2, 3, 4, 5. Please do not get the questions wrong by numbering the groups 1 to 5. **Question 3.7** asks you to make 4 **orthogonal** contrasts, each contrast comparing one dose group to the average of all higher dose groups, e.g., low versus the average of medium and high, asking whether low dose is not as effective as a higher dose. Use **integer contrast weights** as in (4, -6, 2, 1, -1), but use appropriate weights with orthogonal contrasts.

Follow instructions. Write your name, last name first, on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. **Do not turn in additional pages**. Do not turn in graphs. **Brief answers suffice**. If a question asks you to circle an answer, then you are correct if you **circle the correct answer**. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam. The exam is due **at noon Wednesday December 18, 2012, at my office, 473 JMHH**. You may turn in the exam early by placing it in an envelope addressed to me and leaving it in my mail box in statistics, 4th floor, JMHH. If you prefer, give it to Noel at the front desk in statistics. Make and keep a photocopy of your answer page. The answer key will be posted in the revised bulk pack on-line.

Name (Last, First):	ID#						
PROBLEM SET #3 STATISTICS 500 FALL 2013: ANSWER PAGE 1							
This is an exam. Do not discuss it with a							
(Part 1). Read the important note on the	All questions in part 1 are						
data page. Use y1 and x1 to answer part	based on y1 and x1						
1. Define them as on the data page.	CIRCLE the correct answer.						
1.1 Which model has the smallest C_P value							
using y1 and x1? List all of the predictor							
(x) variables in this model.							
1.2 What is the numerical value of C_P in the							
model you selected in 1.1? What is the	$C_P = _$ Size =						
"size" of this model, that is, the value we	- 2						
plot C_P against? What is R^2 for this model?	R ² =						
1.3 When C_P is greater than the size of the							
model (see 1.2), then this fact is a sign that	TRUE FALSE						
the model contains unneeded variables.							
1.4 A small C_P is a sign that the model omits							
variables needed for prediction.	TRUE FALSE						
1.5 Among models fitted by leaps that have							
C _P less than or equal to the size of the							
model, the variable vigorous is in all of	TRUE FALSE						
these models but the variable educ is only							
some of these models.							
1.6 Using all 8 predictors in x1 to fit y1 in a							
regression using lm, which one of the 8	Variable name:						
predictors has the largest VIF = variance	2						
inflation factor? What is the numerical	VIF: R ² :						
value of VIF? What is the R^2 of this							
predictor with the other 7 predictors?							
(Part 2). Read the important note on the data	1 1						
page. Use y2 and x2 to answer part 2.	based on y2 and x2						
Define them as on the data page. Do not use	Fill in or CIRCLE the correct answer.						
leaps for part 2; use only lm.	4						
2.1 Fit a regression predicting cogsc using jus							
the variables identified in question 1.1 and	F-statistic: df= (,)						
using only the data in y2 and x2. What is the	Dushus						
F-statistic for this regression? What are its df	P-value:						
= degrees of freedom? What is the P-value? 2.2 The multiple squared correlation P^2 for							
2.2 The multiple squared correlation R^2 for the regression in 2.1 is lower than for the							
the regression in 2.1 is lower than for the	TRUE FALSE						
regression using these same variables in y1 and x1 (in 1.2)							
and x1 (in 1.2).							
2.3 The model in 2.1 has a lower value of	TRUE FALSE						
PRESS = predicted residual sum of squares then the model with 8 predictors using y_{2}^{2} x_{3}^{2}							
than the model with 8 predictors using y_2 , x_2 .							

Name (Last, First): ID#										
	FALL 2013: ANSWER PAGE 2									
	This is an exam. Do not discuss it with an									
	(Part 3). Part 3 uses the IBS data. As noted					Answer part 3 assuming the model for the				
1 0	on the data page, dose and dosef (numeric vs					on the	1 0			
factor) behave diffe			Fill	in (or CIRCLI	E the con	rrect ans	swer.		
3.1 Test the null hypothesis										
improvement in abdominal			Name:		Valu					
same in the five groups. W						LE ONI				
the test statistic? What is in			PL	AU	SIBLE	NOT P	LAUSI	BLE		
the P-value? Is the null hy										
3.2 Use Tukey's method to				-	oups numb	-				
of two of the five groups.			i	imp	ortant note	on the o	data pag	e.		
family-wise error rate at 5%										
groups that differ significant										
NONE. See important note										
3.3 Weak control of the far	•	r rate								
at 5% means that if H_0 in 3					TRUE	FA	LSE			
chance of finding at least o										
difference is at most 5%. (5	· ·									
3.4 Strong control of the fa										
rate at 5% means that even	•					-	LOP			
null hypotheses tested is fa			TRUE FALSE							
finding at least one signific	ant difference	1s at								
most 5%. (5 points)										
3.5 Repeat question 3.2, bu		c								
method instead (using the p		e of								
the standard deviation, the		•								
3.6 Holm's method control	•						LOF			
error rate in the strong sens	e, but Tukey's	8	TRUE FALSE							
method does not.			DI	1	X 7 1	T		TT' 1		
3.7 Make 4 orthogonal int	0		Place	bo	Verylow	Low	Med	High		
weights as described on the	- 0									
compare individual doses to										
	higher doses. Each of the four rows is one									
contrast. The columns are		s.								
3.8 Use the contrasts		_			n the anov					
Source	Sum of	0	ees of		Mean	F	p-valı	ıe		
	squares	free	dom	S	quare					
Between groups										
Placebo vs higher dose										
Verylow vs higher dose										
Low vs higher dose										
Medium vs High										
Within groups (error)						XXXX	XXXXXX	XX		

```
Problem Set 3, Fall 2013, Statistics 500
                       DOING THE PROBLEM SET IN R
Part 1.
> dim(cogscore)
[1] 1108
         16
> 1108/2
[1] 554
> x<-cogscore[,c(2,3,4,6,12,13,15,16)]</pre>
> head(x)
 aqe
      bmi educ alcohol cigsperday female vigorous moderate
3 62 36.94 3
                   0.0
                             0 0 0
                                                           Ω
> x1<-x[1:554,]</pre>
> y1<- cogscore$cogsc[1:554]</pre>
> x2<-x[555:1108,]</pre>
> y2<- cogscore$cogsc[555:1108]</pre>
> library(leaps)
> mod<-leaps(x=x1,y=y1,names=colnames(x1))</pre>
> which.min(mod$Cp)
[1] 29
> mod$which[29,]
       age bmi educ alcohol cigsperday female vigorous
                                                              moderate
      TRU FALSE TRUE FALSE
                              FALSE
                                            TRUE
                                                      TRUE
                                                                 FALSE
> mod$Cp[29]
[1] 2.503731
> mod$which[mod$Cp<=mod$size,]</pre>
  age
       bmi educ alcohol cigsperday female vigorous moderate
3 TRUE FALSE TRUE FALSE
                              FALSE
                                       TRUE
                                              FALSE
                                                        FALSE
4 TRUE FALSE TRUE FALSE
                                               TRUE
                               FALSE
                                       TRUE
                                                        FALSE
. . .
> attach(x1)
> library(DAAG)
> summary(lm(y1~age+educ+female+vigorous))
... Multiple R-squared: 0.3534
> vif(lm(y1~age+bmi+educ+alcohol+cigsperday+female+vigorous+moderate))
             educ alcohol cigsperday
                                            female vigorous
age
     bmi
moderate
1.1250 1.0926 1.1321
                         1.0509
                                    1.0786
                                               1.0598
                                                          1.0948
1.1594
> 1-1/1.1595
[1] 0.1375593
> summary(lm(educ~age+bmi+alcohol+cigsperday+female+vigorous+moderate))
. . .
Multiple R-squared: 0.1167
Part 2
> detach(x1)
> attach(x2)
> summary(lm(y2~age+educ+female+vigorous))
... Multiple R-squared: 0.3609
F-statistic: 77.52 on 4 and 549 DF, p-value: < 2.2e-16
>
press(lm(y2~aqe+bmi+educ+alcohol+ciqsperday+female+vigorous+moderate))
[1] 126586.5
> press(lm(y2~age+educ+female+vigorous))
[1] 126547.9
Part 3. IBS data. 3.1
```

```
> summary(aov(iapain~dosef))
            Df Sum Sq Mean Sq F value Pr(>F)
                 7.28 1.8193
dosef
            4
                                3.179 0.0138 *
           345 197.42 0.5722
Residuals
> TukeyHSD(mod)
  Tukey multiple comparisons of mean 95% family-wise confidence level
                      diff
                                   lwr
                                            upr
                                                    p adi
VeryLow-Placebo 0.24157129 -0.10906624 0.5922088 0.3250271
                0.33210369 -0.01853383 0.6827412 0.0730586
Low-Placebo
Medium-Placebo 0.40359625 0.05295872 0.7542338 0.0148874
High-Placebo 0.36255280 0.01191528 0.7131903 0.0386954
Low-VeryLow
               0.09053240 -0.26010512 0.4411699 0.9545933
High-Medium -0.04104344 -0.39168096 0.3095941 0.9976952
3.5
> pairwise.t.test(iapain,dosef)
       Pairwise comparisons using t tests with pooled SD
       Placebo VeryLow Low Medium
VeryLow 0.418 -
                       _
       0.078 1.000
                      _
Low
Medium 0.017 1.000 1.000 -
       0.044 1.000 1.000 1.000
Hiqh
P value adjustment method: holm
3.7
> dosef2<-dosef</pre>
> contrasts(dosef2)<-cbind(placebo=c(-4,1,1,1,1),</pre>
   verylow=c(0,-3,1,1,1), low=c(0,0,-2,1,1), medium=c(0,0,0,-1,1))
> summary(aov(iapain~dosef2))
            Df Sum Sq Mean Sq F value Pr(>F)
             4 7.28 1.8193 3.179 0.0138 *
dosef2
Residuals
           345 197.42 0.5722
3.8
> mm<-model.matrix(aov(iapain~dosef2))</pre>
> mm<-as.data.frame(mm)</pre>
> attach(mm)
> mod2<-lm(iapain~dosef2placebo+dosef2verylow+dosef2low+dosef2medium)</pre>
> anova(mod2)
Analysis of Variance Table
              Df Sum Sq Mean Sq F value
                                           Pr(>F)
              1 6.283 6.2829 10.9798 0.001019 **
dosef2placebo
dosef2verylow 1 0.814 0.8139 1.4224 0.233829
              1 0.121 0.1212 0.2119 0.645591
dosef2low
dosef2medium 1 0.059 0.0590 0.1030 0.748411
Residuals 345 197.418 0.5722
```

PROBLEM SET #3 STATISTICS 500 FALL 2013: ANSWER PAGE 1 This is an exam. Do not discuss it with anyone. Due noon Wed., 18 December.

This is an exam. Do not discuss it with anyo	
(Part 1). Read note on the data page. Use y1 and	All questions in part 1 are based on y1 and x1
x1 to answer part 1. Defined on the data page.	CIRCLE the correct answer.
1.1 Which model has the smallest C _P value using	
y1 and x1? List all of the predictor (x) variables in	age, educ, female, vigorous
this model.	
1.2 What is the numerical value of C_P in the model	
you selected in 1.1? What is the "size" of this	$C_{P} = 2.50$ Size = 5
model, that is, the value we plot C _P against? What	
is \mathbf{R}^2 for this model?	$R^2 = 0.3534$
1.3 When C _P is greater than the size of the model	\frown
(see 1.2), then this fact is a sign that the model	TRUE (FALSE)
contains unneeded variables.	
1.4 A small C_P is a sign that the model omits	
variables needed for prediction.	TRUE FALSE
1.5 Among models fitted by leaps that have C_P	
less than or equal to the size of the model, the	
variable vigorous is in all of these models but the	TRUE (FALSE)
variable educ is only some of these models.	
1.6 Using all 8 predictors in x1 to fit y1 in a	
regression using lm, which one of the 8 predictors	Variable name: moderate
has the largest VIF = variance inflation factor?	VIF: 1.159 $R^2: 0.138$
What is the numerical value of VIF? What is the	These predictors are not highly correlated.
R^2 of this predictor with the other 7 predictors?	

(Part 2). Read note on the data page. Use y2 and	All questions in part 2 are					
x2 to answer part 2. Define them as on the data	based on y2 and x2					
page. Do not use leaps for part 2; use only lm.	Fill in or CIRCLE the correct answer.					
2.1 Fit a regression predicting cogsc using just the						
variables identified in question 1.1 and using only	F-statistic: $77.52 \text{ df} = (4, 549)$					
the data in y2 and x2. What is the F-statistic for						
this regression? What are its $df = degrees$ of	P-value: 2.2×10^{-16}					
freedom? What is the P-value?						
2.2 The multiple squared correlation R^2 for the						
regression in 2.1 is lower than for the regression	TRUE FALSE					
using these same variables in y1 and x1 (in 1.2).	\sim					
2.3 The model in 2.1 has a lower value of PRESS	TRUE FALSE					
= predicted residual sum of squares than the model						
with 8 predictors using y2 and x2.						
Name (Last, First):	ID#					
PROBLEM SET #3 STATISTICS 500 FA	ALL 2013: ANSWER PAGE 2					
This is an exam. Do not discuss it with anyone. Due noon Wed., 18 December.						
(Part 3) Part 3 uses the IBS data As noted Answer part 3 assuming the model for the IBS						

(Part 3). Part 3 uses the IBS data. As noted	Answer part 3 assuming the model for the IBS
on the data page, dose and dosef (numeric	data given on the data page.
vs factor) behave differently in R.	Fill in or CIRCLE the correct answer.

3.1 Test the null hypothe	sis H ₀ that the								
improvement in abdomin	Name: F-test Value: 3.179 P-value: 0.0138								
the same in the four grou	CIRCLE ONE								
name of the test statistic?	Р	LAU	USIBLE (NOT F	PLAUSI	BDE			
What is the P-value? Is t									
plausible?	• •								
3.2 Use Tukey's method	to compare all	-	U	se g	roups nur	nbers, eg	0-1, as in	n the	
pairs of two of the five g	oups. Control	lling		-	-	ote on the			
the family-wise error rate	-	-					10		
pairs of groups that differ					0-3	0-	4		
none, write NONE. See	important note	on							
the data page.	-								
3.3 Weak control of the f	amily wise-err	or		1					
rate at 5% means that if H	•				TRUE	J FA	ALSE		
chance of finding at least		-			\smile	-			
difference is at most 5%.	2								
3.4 Strong control of the	family wise-er	ror	If a n	ull l	hypothesi	s is false,	you wan	t a high	
rate at 5% means that eve			If a null hypothesis is false, you want a high probability of rejecting it, not 5%						
the null hypotheses tested	l is false, the			•	TRUE		ALSE		
chance of finding at least	one significar	nt							
difference is at most 5%.	-								
3.5 Repeat question 3.2, but use Holm's									
method instead (using the	method instead (using the pooled estimate			0-3 0-4					
of the standard deviation,	of the standard deviation, the default in R).								
3.6 Holm's method contr	ols the family-	wise	•	Botl	n control	it in the st	rong sen	se.	
error rate in the strong set	error rate in the strong sense, but Tukey's				TRUE	\mathbf{F}	ALSE		
method does not.									
3.7 Make 4 orthogonal in	nteger contras	t	Place	ebo	Verylow	/ Low	Med	High	
weights as described on t	he data page 1	to	-4		1	1	1	1	
compare individual doses	to the average	e of	0		-3	1	1	1	
higher doses. Each of the	e four rows is o	one	0	0		-2	1	1	
contrast. The columns ar	e the five grou	ips.	0			-1	1		
3.8 Use the contrasts in 3	.7 to fill in the	;			tał	ole below.			
anova									
Source	Sum of	Degr	ees of Mean		Mean	F	p-va	lue	
	squares	free	dom	S	quare				
Between groups	7.28		4	1	.8193	3.18	0.01	38	
Placebo vs higher dose	6.283		1		.283	10.98	0.001	019	
Verylow vs higher	0.814		1	0	.814	1.42	0.2	3	
dose									
Low vs higher dose	0.121		1	0	.121	0.21	0.6	5	
Medium vs High	0.059		1	0	.059	0.10	0.7	'5	
Within groups (error)	197.418	3	45	0	.5722	XXXX	XXXXX	XXX	

PROBLEM SET #1 STATISTICS 500 FALL 2014: DATA PAGE 1 Due in class at noon on Tuesday, October 21, 2014. This is an exam. Do not discuss it with anyone.

The data are from NHANES, the 2009-2010 National Health and Nutrition Examination Survey (<u>http://www.cdc.gov/nchs/nhanes.htm</u>). There is no need to visit the webpage unless you want to. The file adultcal describes calories consumed on the first interview day for individuals 20 years old or older. Calories are deduced from a food interview.

The file is simplified in several ways; in particular, missing data have been removed.

SEQN nhanes sequence number or id age – age in year 0-19 female – 1 if female, 0 if male ed and edf record education. Type table(adultcal\$edf) for categories. income – ratio of family income to the poverty level, capped at 5 times. married – 1 if married or living with partner, 0 otherwise bmi – body mass index waist – waist circumference in cm 1 cm = 0.393701 inches calories – calories consumed on first interview day

> .	head(ad	dulto	cal)									
	SEQN	age	female	ed			edf	income	married	bmi	waist	calories
1	51624	34	0	3		High School	Grad/GED	1.36	1	32.22	100.4	1844
5	51628	60	1	3		High School	Grad/GED	0.69	0	42.39	118.2	1913
б	51629	26	0	2		9	-11 grade	1.01	1	32.61	103.7	3123
7	51630	49	1	4	Some	college or a	AA degree	1.91	1	30.57	107.8	1345
10	51633	80	0	4	Some	college or a	AA degree	1.27	1	26.04	91.1	1565
12	51635	80	0	2		9	-11 grade	1.69	0	27.62	113.7	1479
>	dim(ad	ultca	1)								
[]	L] 50	000	10									

The data are in the object adultcal in the course workspace at <u>http://www-stat.wharton.upenn.edu/~rosenbap/</u>. You will have to download the workspace again to have the current version with adultcal. If you download the workspace and adultcal is not there, it probably means that you web browser remembers the last time you downloaded the file and thinks (incorrectly) that you do not need to download it again – in this case, clear the browser's memory and try again. There is a csv file adultcal.csv with the data at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ if you wish to use software other than R. The csv file should open in excel and other packages.

PROBLEM SET #1 STATISTICS 500 FALL 2014: DATA PAGE 2

This is an exam. Do not discuss it with anyone. Due Tuesday, October 21, 2014 Before you do anything else, plot the data in various ways. For example:

```
> attach(adultcal)

> boxplot(calories)

> plot(age,calories)

> lines(lowess(age,calories),col="red",lwd=2)

> boxplot(calories~female)

> boxplot(calories~female:married)

etc

DO NOT TURN IN THE PLOTS.

Model #1

calories = \beta_0 + \beta_1 age + \beta_2 female + \beta_3 ed + \beta_4 income + \epsilon where \epsilon are iid N(0,\sigma^2)

Model #2

calories = \gamma_0 + \gamma_1 age + \gamma_2 female + \gamma_3 income + \eta where \eta are iid N(0,\omega^2)
```

Model #3

calories = $\lambda_0 + \lambda_1 \operatorname{age} + \lambda_2 \operatorname{female} + \zeta$ where $\zeta \operatorname{are iid} N(0, \kappa^2)$

Model 1 has slopes β (beta), while model 2 has slopes γ (gamma), so that different things have different names. The choice of Greek letters is arbitrary. The same is true for model 3.

It is often useful to put two plots next to each other on the same page so you can see the same point in both plots. If you type

> par(mfrow=c(1,2))

then the next two plots will appear on the same page, the first on the left, the second on the right. For example, you can compare a boxplot and a Normal quantile plot in this way. The command sets a graphics parameter (that's the 'par'), and it says that there should be 1 row of graphs with 2 columns, filling in the first row first. By setting graph parameters, you can control many aspects of a graph. The free document R for Beginners by Paradis (<u>http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf</u>) contains lots of useful information about graph parameters (see page 43).

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Name:	ID#							
PROBLEM SET #1 STATISTICS 500 FALL 2014: ANSWER PAGE 1								
This is an exam. Do not discuss it with	anyone. Due Tuesday, October 21	l noon						
Question (Part 1)	Question (Part 1) CIRCLE the correct answer							
1.1 There is one person who consumed more than 10,000 calories.	TRUE FALSE							
1.2 The lower quartile of calories for males is above the median for females.	TRUE FALSE							
1.3 The median waist size for females is more than 37 inches = 93.98 cm.	TRUE FALSE							
1.4 Of the five education categories, the lowest median of calories is for the <9 th grade category.	TRUE FALSE							

Fit model 1 from the data page.	Fill in or CIRCLE the correct answer.
2.1 Test the null hypothesis that the	N N 1
coefficient of income in model 1 is zero,	Name: Value:
$H_0:\beta_4=0$. What is the name of the test?	
What is the numerical value of the test	P-value:
statistic? What is the two-sided P-value? Is	Circle one:
the null hypothesis plausible using the	Plausible Not Plausible
conventional 0.05 level standard?	
2.2 Test the null hypothesis that all four	
coefficients are zero, $H_0:\beta_1=\beta_2=\beta_3=\beta_4=0$.	Name: Value:
What is the name of the test? What is the	
numerical value of the test statistic? What is	P-value:
the P-value? Is the null hypothesis plausible	Circle one:
using the conventional 0.05 level standard?	Plausible Not Plausible
2.3 Two people have the same gender, the	
same education, and the same income, but	
one is 30 years old and the other is 40 years	
old. Using just the least squares estimate of	TRUE FALSE
the coefficient β_1 of age, the model would	
guess that the 40 year-old consumes 500	
calories less than the 30 year old.	
2.4 Give the 95% confidence interval for the	
coefficient β_2 of female. If a man and a	95% CI:
woman had the same age, education and	95% CI. [,]
income, the model would predict higher	
calories consumed for the woman.	TRUE FALSE

Name:	ID#	
PROBLEM SET #1 STATISTICS 5	00 FALL 2014: AN	SWER PAGE 2
This is an exam. Do not discuss it with a	anyone. Due Tuesd	ay, October 21 noon
Fit models 2 and 3 from the data page.	Fill in or CIRCLI	E the correct answer.
3.1 Assuming model 2 is true, test the null		
hypothesis that the coefficient of income in	Name: V	/alue:
model 1 is zero, $H_0:\gamma_3=0$. What is the name		
of the test? What is the numerical value of	P-value:	
the test statistic? What is the two-sided P-	Circ	ele one:
value? Is the null hypothesis plausible	Plausible	Not Plausible
using the conventional 0.05 level standard?		
3.2 Assuming model 1 is true, test the null		
hypothesis that model 3 is also true, that is,	Name: V	/alue:
test $H_0:\beta_3=\beta_4=0$. What is the name of the		
test? What is the numerical value of the test	P-value:	
statistic? What is the P-value? Is the null	Circ	ele one:
hypothesis plausible using the conventional	Plausible	Not Plausible
0.05 level standard?		
Use the fit of model 1 to answer questions	Fill in or CIRCLI	E the correct answer.
in part 4.		
4.1 The Normal quantile plot of the		
residuals from model 1 gives the	TRUE	FALSE
appearance of residuals that are Normally		
distributed.		
4.2 Test Normality of the residuals using		
the Shapiro-Wilk test. What is the P-value?	P-value:	
4.3 The Normal plot of residuals suggests		
negative skewness, a long left-hand tail,		
with too many people consuming far fewer	TRUE	FALSE
calories than the model predicts. This		
impression of negative skewness is		
reinforced by a boxplot of the residuals.		
4.4 Plot residuals as y against fitted values		
as x. Plot the absolute value of residuals as		
y against fitted values as x. Add a lowess	TRUE	FALSE
curve (in red, so you can see it) in the		
second plot. The assumption of constant		
variance is clearly violated here, with larger		
absolute residuals being more common at		
low fitted calories (say 1500) than at higher		
fitted calories (say 2500), so the variance		
looks larger when the fitted values are		
smaller.		

PROBLEM SET #1 STATISTICS 500 FALL 2014: ANSWER PAGE 1: ANSWERS This is an exam. Do not discuss it with anyone. Due noon in class 7 points each, except as noted

/ points each,	except as noted
Question (Part 1)	CIRCLE the correct answer
1.1 There is one person who consumed more than 10,000 calories.	TRUE FALSE
1.2 The lower quartile of calories for males is above the median for females.	TRUE FALSE
1.3 The median waist size for females is more than 37 inches = 93.98 cm.	TRUE FALSE
1.4 Of the five education categories, the lowest median of calories is the <9 th grade category.	TRUE FALSE

Fit model 1 from the data page.	Fill in or CIRCLE the correct answer.
2.1 Test the null hypothesis that the coefficient of income in model 1 is zero,	Name: t-test Value: 1.469
$H_0:\beta_4=0$. What is the name of the test? What is the numerical value of the test	P-value: 0.1420
statistic? What is the two-sided P-value? Is the null hypothesis plausible using the	Circle one: Plausible Not Plausible
conventional 0.05 level standard?2.2 Test the null hypothesis that all four	
coefficients are zero, $H_0:\beta_1=\beta_2=\beta_3=\beta_4=0$. What is the name of the test? What is the	Name: F-test Value: 258.5
numerical value of the test statistic? What is	P-value: <2.2 x 10 ⁻¹⁶ Circle one:
the P-value? Is the null hypothesis plausible using the conventional 0.05 level standard?	Plausible Not Plausible
2.3 Two people have the same gender, the same education, and the same income, but	
one is 30 years old and the other is 40 years old. Using just the least squares estimate of	TRUE FALSE
the coefficient β_1 of age, the model would guess that the 40 year-old consumes 500	-12.1585 x 10 is not -500
calories less than the 30 year old.2.4 Give the 95% confidence interval for the	
coefficient β_2 of female. If a man and a woman had the same age, education and	95% CI: [-735.8, -637.6]
income, the model would predict higher calories consumed for the woman.	Women consume less, maybe -686.7 TRUE FALSE

PROBLEM SET #1 STATISTICS 500 FALL 2014: ANSWER PAGE 2: ANSWERS This is an exam. Do not discuss it with anyone. Due in class on

	it with anyone. Due in class on
Fit models 2 and 3 from the data page.	Fill in or CIRCLE the correct answer.
3.1 Assuming model 2 is true, test the null	
hypothesis that the coefficient of income in	Name: t-test Value: 2.53
model 1 is zero, $H_0:\gamma_3=0$. What is the name	
of the test? What is the numerical value of	P-value: 0.0115
the test statistic? What is the two-sided P-	Circle one:
value? Is the null hypothesis plausible	Plausible (Not Plausible)
using the conventional 0.05 level standard?	
3.2 Assuming model 1 is true, test the null	
hypothesis that model 3 is also true, that is,	Name: F-test Value: 4.658
test $H_0:\beta_3=\beta_4=0$. What is the name of the	
test? What is the numerical value of the test	P-value: 0.009526
statistic? What is the P-value? Is the null	Circle one:
hypothesis plausible using the conventional	Plausible Not Plausible
0.05 level standard? (9 points)	
· · · · · · · · · · · · · · · · · · ·	
Use the fit of model 1 to answer questions	Fill in or CIRCLE the correct answer.
in part 4.	
4.1 The Normal quantile plot of the	\frown
residuals from model 1 gives the	TRUE (FALSE)
appearance of residuals that are Normally	Remember, we expect a straight line for
distributed.	Normal data, and this is curved.
4.2 Test Normality of the residuals using	
the Shapiro-Wilk test. What is the P-value?	P-value: 2.2×10^{-16}
4.3 The Normal plot of residuals suggests	
negative skewness, a long left-hand tail,	\frown
with too many people consuming far fewer	TRUE (FALSE)
calories than the model predicts. This	It is definitely skewed, but skewed right,
impression of negative skewness is	not left. Sometimes people consume a
reinforced by a boxplot of the residuals.	lot more calories than the model expects
4.4 Plot residuals as y against fitted values	
as x. Plot the absolute value of residuals as	\frown
y against fitted values as x. Add a lowess	TRUE (FALSE)
curve (in red, so you can see it) in the	
second plot. The assumption of constant	The assumption of constant variance
variance is clearly violated here, with larger	looks wrong here, but calories are more
absolute residuals being more common at	unstable when fitted calories are higher.
low fitted calories (say 1500) than at higher	
fitted calories (say 2500), so the variance	
looks larger when the fitted values are	
smaller.	
smaller.	

```
Problem Set 1, Fall 2014
                     DOING THE PROBLEM SET IN R
1.1
> max(calories)
[1] 10463
1.2
> summary(calories[female==1])
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
    70 1281 1691
                        1777 2150
                                       5814
> summary(calories[female==0])
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
   300 1735 2275
                        2450 2964
                                      10460
1.3
> tapply(waist*.393701,female,summary)
$`0`
  Min. 1st Qu. Median
                       Mean 3rd Qu.
                                      Max.
  25.08 35.91 39.49
                       40.01 43.66
                                      66.42
$`1`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
 23.50 33.62 37.64
                       38.24 42.24
                                      64.96
1.4
> tapply(calories,edf,summary)
$`<9th grade`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
   279 1252 1734 1891 2336
                                      6892
$`9-11 grade`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
   305 1415 1891
                        2087 2581
                                       8077
$`High School Grad/GED`
  Min. 1st Qu. Median Mean 3rd Qu.
                                     Max.
   164 1475 1994 2174 2643
                                       9315
$`Some college or AA degree`
  Min. 1st Qu. Median Mean 3rd Qu.
                                      Max.
   274
        1464
                1948 2136 2597
                                      10460
$`BA degree+`
  Min. 1st Qu. Median Mean 3rd Qu.
                                       Max.
         1513
    70
                1986
                        2110
                               2533
                                       7301
2
> md<-lm(calories~age+female+ed+income)</pre>
> summary(md)
Call:
lm(formula = calories ~ age + female + ed + income)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2958.7537 53.0998 55.721 <2e-16 ***
                      0.7219 -16.842 <2e-16 ***
age
           -12.1585
           -686.7017
                      25.0221 -27.444 <2e-16 ***
female
ed
            18.8074
                     11.0156 1.707 0.0878 .
                      8.7301 1.469 0.1420
income
            12.8205
Residual standard error: 880.8 on 4995 degrees of freedom
Multiple R-squared: 0.1715, Adjusted R-squared: 0.1708
F-statistic: 258.5 on 4 and 4995 DF, p-value: < 2.2e-16
```

```
> confint(md)
                 2.5 % 97.5 %
(Intercept) 2854.654814 3062.85258
age -13.573750 -10.74320
female
           -735.756123 -637.64735
ed
            -2.788033 40.40274
income
             -4.294376 29.93546
3.1
> md2<-lm(calories~age+female+income)</pre>
> summary(md2)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3013.9077 42.1511 71.50 <2e-16 ***
                       0.7118 -17.37 <2e-16 ***
age -12.3652
                       25.0023 -27.39 <2e-16 ***
female
          -684.8067
                       7.7643 2.53 0.0115 *
income
          19.6402
3.2
> md3<-lm(calories~age+female)</pre>
> anova(md3,md)
Analysis of Variance Table
Model 1: calories ~ age + female
Model 2: calories ~ age + female + ed + income
 Res.Df
             RSS Df Sum of Sq F Pr(>F)
1 4997 3882746217
2 4995 3875518001 2 7228216 4.6581 0.009526 **
4.
> qqnorm(md$resid)
> shapiro.test(md$resid)
       Shapiro-Wilk normality test
data: md$resid
W = 0.9276, p-value < 2.2e-16
> boxplot(md$resid)
> plot(md$fit,md$resid)
> plot(md$fit,abs(md$resid)
> lines(lowess(md$fit,abs(md$resid)),col="red")
```

PROBLEM SET #2 STATISTICS 500 FALL 2014: DATA PAGE 1 Due in class at noon in class on Tuesday November 25, 2014. This is an exam. Do not discuss it with anyone.

The data are from a paper by Card, Chetty and Weber (CCW) (2007) Cash-onhand and competing models of intertemporal behavior: new evidence from the labor market. *Quarterly Journal of Economics*, 1511-1560. In their Table 1, their estimation sample had 650,922 people. The data sample for this problem set is simpler and smaller. It began as a random sample of 5000 individuals. Then people with missing data on key variables were removed, leaving 3923 people. The study is in various ways more complex than the data for the problem set, sometimes in interesting ways, but this is a problem set about regression, not a comprehensive study.

In Austria, a person who is unemployed may receive various unemployment benefits depending upon past employment. A person who has 3 or more years of job tenure receives a severance payment equivalent to two-months of pretax salary – i.e., two months wages. There is no severance payment for a person with less than 3 years of job tenure. The variables in the object ccwSt500 are as follows.

Variable name here	Variable name in CCW	Meaning
sevpay	sevpay	Severence pay, 1=yes, 0 =no
age	age	Age
female	female	1=female, 0=male
highed	high_ed	post-compulsory schooling, 1=yes, 0=no
married	married	1=married, 0=not
austrian	austrian	1=Austrian, 0=other
bluecollar	bluecollar	1=lost blue collar job, 0=lost other
		job
priorwage	ann_wage	Wage before job loss, euros/year
tenure	tenure_mths	Tenure (ie time) in previous job in months
uduration	uduration_mths	Duration of nonemployment in months
wrk12	wrk12<-pmax(12-uduration,0)	Months worked in the 12 months following unemployment
nextwage	ne_wage0	Monthly wage in next job (sometimes missing)
wage12	wage12<-ne_wage0*wrk12 wage12[wrk12==0]<-0	(Approximately) total wages in the 12 months after job loss.
id	1:3923	1 to 3923

The original paper had various motivations. One was to ask whether severance pay caused people to stay out of work longer. Another was to ask whether staying out longer was, in a sense, a good thing, because it gave people the chance to find a better job. You will do various regression with the data, but if you want to take a serious look at the paper's questions, you might want to look at the paper itself.

PROBLEM SET #2 STATISTICS 500 FALL 2014: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due Tuesday November 25, 2014.

```
> dim(ccwSt500)
[1] 3923 13
> colnames(ccwSt500)
[1] "id" "sevpay" "female" "highed"
"married" "austrian" "bluecollar" "priorwage"
"tenure" "uduration" "wrk12" "nextwage"
"wage12"
```

The data are in the object ccwSt500 in the course workspace at <u>http://www-</u><u>stat.wharton.upenn.edu/~rosenbap/</u>. You will have to download the workspace again to have the current version with ccwSt500. If you download the workspace and ccwSt500 is not there, it probably means that you web browser remembers the last time you downloaded the file and thinks (incorrectly) that you do not need to download it again – in this case, clear the browser's memory and try again. There is a csv file ccwSt500.csv with the data at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ if you wish to use software other than R. The csv file should open in excel and other packages.

The variable wage12 is (approximately) what the person earned in the year after losing the job: it is the number of months work in the next 12 months times the salary at the new job. It is not perfect – the person might have gotten a raise in the middle of the year – but let's ignore its imperfections. Define a new variable wageloss as the difference between the annual wage prior to job loss minus wage12

> attach(ccwSt500)

> wageloss<-priorwage-wage12</pre>

so this what the individual would have earned at the salary of the job just lost minus what the individual earned in the year after job loss. A positive number is **bad** for the individual: it means his/her wage income went down quite a bit, by not working and perhaps by working for less. A negative number is **good** for the individual – despite the job loss, he/she earned more. How many people had a negative wage loss? Model #1

wageloss = $\beta_0 + \beta_1$ sevpay + β_2 age + β_3 female + β_4 highed +

 β_5 married + β_6 austrian + β_7 bluecollar + ϵ where ϵ are iid N(0, σ^2) After fitting model 1, you should plot the residuals in the usual ways, even if questions do not ask you to do this.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Last name: First name	ID#
PROBLEM SET #2 STATISTICS	500 FALL 2014: ANSWER PAGE 1
This is an exam. Do not discuss it with	anyone. Due Tuesday November 25, 2014.
Fit model 1 on the data page. Use it for	Fill in or circle the correct answer.
the questions in part 1.	
1.1 Give the estimate and the 95%	
confidence interval for the β_1 the	Estimate:CI: [,]
coefficient of sevpay.	
1.2 For two people who look the same in	
terms of all predictors in model 1 except	
sevpay, the model predicts 1081.78 euro	TRUE FALSE
less wage loss for the person who received	
the severance payment.	
1.3 Model 1 assumes that the relationship	
between wageloss and age is parallel for	Name: Value:
sevpay=1 and sevpay=0. In model 1, test	
this assumption. Give the name of the test	DF: P-value:
statistic, the numerical value of the test	
statistic, its degrees of freedom (DF), the	PLAUSIBLE NOT PLAUSIBLE
two-sided p-value and state whether	
parallelism is plausible.	
1.4 Model 1 assumes that the relationship	
between wage loss and age is linear, not	
quadratic. In model 1, test the assumption	Name:
that the relationship is linear against the	
alternative that it is quadratic in age. Give	DF: P-value:
the name of the test statistic, the	
numerical value of the test statistic, its	PLAUSIBLE NOT PLAUSIBLE
degrees of freedom, the two-sided p-value	
and state whether a linear relationship	
with age is plausible.	
1.5 Use Tukey's method to test the null	
hypothesis that no transformation of	Name: Value:
wageloss is needed against the alternative	
that a power transformation would be	DF:P-value:
helpful. Give the name, value, DF, two-	The null hypothesis that no transformation
sided p-value and state whether no	is needed is:
transformation is needed.	PLAUSIBLE NOT PLAUSIBLE
1.6 $(y^{p}-1)/p$ is very close to the base-10	
$\log \text{ of } y$, that is $\log_{10}(y)$, for p very near 0.	TRUE FALSE
1.7 In model 1, test the hypothesis that	NT VI
there is no interaction between female and	Name: Value:
married. Give the name, value, DF, two-	
sided p-value and state whether the	DF: P-value:
hypothesis of no interaction is plausible.	
	PLAUSIBLE NOT PLAUSIBLE

Last name: First name:	ID#
PROBLEM SET #2 STATISTICS	500 FALL 2014: ANSWER PAGE 2
This is an exam. Do not discuss it with an	nyone. Due Tuesday November 25, 2014.
	Fill in or circle the correct answer.
2.1 Which observation in model 1 has the	
largest leverage (i.e. hatvalue)? Give the	id =
id number in the last column of ccwSt500.	
What is the numerical value of this	leverage =
person's leverage? Is this leverage large	Circle one
by the rule judging the size of the	LARGE NOT LARGE
leverages?	
2.2 The individual identified in 2.1 has the	
leverage he/she does because the wage12	TRUE FALSE
is so much lower than the priorwage.	
2.3 Which observation in model 1 has the	
largest absolute studentized residual	id =
(rstudent)? Give the id number in the last	
column of ccwSt500. What is the	studentized residual =
numerical value of this person's	Circle one
studentized residual (with its sign $+$ or $-$)?	
This individual went from a low	TRUE FALSE
priorwage to a much higher wage12 (True	
or false)?	
2.4 Is the person in 2.3 an outlier at the	Circle one
0.05 level? What absolute value of the	
studentized residual would just barely	Outlier: YES NO
reject a person as an outlier at the 0.05	X7-1
level in model 1? What are the degrees of	Value:
freedom used in computing this cut-off value?	Degrees of fundame
	Degrees of freedom:
2.5 Testing the null hypothesis of no	Circle one
outliers at the 0.05 level using the Bonferroni inequality with studentized	Circle one
residuals means we expect only one out of	TRUE FALSE
every 20 people in a regression to be	IKUE FALSE
wrongly judged an outlier.	
2.6 Which person had the largest absolute	
dffits? Give the id#. What is the value of	id = dffits =
this person's dffits with its sign $+/-$. This	Circle one
individual moved his/her fitted value up	TRUE FALSE
by 3.1 times its standard error (T/F)	INCL IMEDL
2.7 Do a Normal quantile plot of residuals	Circle one
from model 1 and add a qqline. The	TRUE FALSE
person identified in 2.6 is recognizably off	
the line, but even without this person, the	
residuals look longer-tailed than Normal.	

PROBLEM SET #2 STATISTICS 500 FALL 2014: ANSWER PAGE 1: ANSWERS

LL 2014: ANSWER PAGE 1: ANSWERS
Fill in or circle the correct answer.
Estimate: 1081.78 CI: [510.2, 1653.4]
TRUE (FALSE)
Associated with more, not less, wage loss.
Name: t-statistic Value: 1.316
DF: 3914 P-value: 0.188
\frown
(PLAUSIBLE) NOT PLAUSIBLE
Name: t-statistic Value: -2.225
DF: 3914 P-value: 0.026
PLAUSIBLE (NOT PLAUSIBLE)
Name: t-statistic Value: 6.14
10
DF: 3914 P-value: 9.31 x 10 ⁻¹⁰
The null hypothesis that no transformation
is needed is:
PLAUSIBLE NOT PLAUSIBLE
TRUE FALSE
$\log 10(3) = 0.4771213, \ \log(3) = 1.098612$
((3^0.001)-1)/0.001=1.099216
Name: t-statistic Value: 2.419
DF: 3914 P-value: 0.0156
PLAUSIBLE NOT PLAUSIBLE

PROBLEM SET #2 STATISTICS 500 FALL 2014: ANSWER PAGE 2: ANSWERS

	ALL 2014: ANSWER PAGE 2: ANSWERS
	Fill in or circle the correct answer.
2.1 Which observation in model 1 has the	
largest leverage (i.e. hatvalue)? Give the	id = 659
id number in the last column of ccwSt500.	
What is the numerical value of this	leverage = 0.00557
person's leverage? Is this leverage large	Circle one
by the rule judging the size of the	LARGE NOT LARGE
leverages?	
2.2 The individual identified in 2.1 has the	
leverage he/she does because the wage12	TRUE 🤇 FALSE 💙
is so much lower than the priorwage.	Leverage is about x, not about y.
2.3 Which observation in model 1 has the	
largest absolute studentized residual	id = 393
(rstudent)? Give the id number in the last	iu - 575
column of ccwSt500. What is the	studentized residual = -5.209
numerical value of this person's	Circle one
studentized residual (with its sign + or $-$)?	
This individual went from a low	TRUE FALSE
priorwage to a much higher wage12 (True	INCE INEDE
or false)?	
2.4 Is the person in 2.3 an outlier at the	Circle one
0.05 level? What absolute value of the	Chele one
studentized residual would just barely	Outlier: YES NO
reject a person as an outlier at the 0.05	Outlief. TES NO
level in model 1? What are the degrees of	Value: 4.370027
e	value. 4.570027
freedom used in computing this cut-off value?	Degrees of freedom, 2014
	Degrees of freedom: 3914
2.5 Testing the null hypothesis of no	Circle and
outliers at the 0.05 level using the	Circle one
Bonferroni inequality with studentized	
residuals means we expect only one out of	TRUE FALSE
every 20 people in a regression to be	That would mean $3923*0.05 = 196$ false
wrongly judged an outlier.	outliers in the current data set!
2.6 Which person had the largest absolute	
dffits? Give the id#. What is the value of	id = 393 dffits = -0.31
this person's dffits with its sign +/ This	Circle one
individual moved his/her fitted value up	TRUE FALSE
by 3.1 times its standard error (T/F)	
2.7 Do a Normal quantile plot of residuals	Circle one
from model 1 and add a qqline. The	TRUE FALSE
person identified in 2.6 is recognizably off	These data would be more appropriate for
the line, but even without this person, the	m-estimation or some other robust or
residuals look longer-tailed than Normal.	nonparametric method.

```
Doing the Problem Set in R
> attach(ccwSt500)
> wageloss<-priorwage-wage12</pre>
Question 1.1
> mod<-
lm(wageloss~sevpay+age+female+highed+married+austrian+bluecollar)
> summary(mod)
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3499.90 753.14 4.647 3.48e-06 ***
           1081.78
                        291.56 3.710 0.000210 ***
sevpay
age
             130.41
                        16.58 7.865 4.73e-15 ***
•••
bluecollar -2376.52 266.18 -8.928 < 2e-16 ***
_ _ _
> confint(mod)
                           97.5 %
                  2.5 %
(Intercept) 2023.31434 4976.4899
            510.15462 1653.4031
sevpay
              97.90418
                        162.9198
age
...
Ouestion 1.3
> isevpayage<-sevpay*age</pre>
>summary(lm(wageloss~sevpay+age+female+highed+married+austrian+
   bluecollar+isevpayage))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
                                4.827 1.44e-06 ***
(Intercept) 3819.27 791.23
            -460.82
                       1208.27 -0.381 0.702935
sevpay
             120.34
                         18.26 6.590 4.97e-11 ***
age
...
              47.79
                         36.33 1.316 0.188395
isevpayage
Question 1.4
> age2<-(age-mean(age))^2</pre>
> summary(lm(wageloss~sevpay+age+female+highed+married+austrian+
    bluecollar+age2))
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 3069.583 777.216
                                  3.949 7.97e-05 ***
            1057.242
                        291.622
                                  3.625 0.000292 ***
sevpay
•••
              -4.279 1.923 -2.225 0.026156 *
age2
Question 1.5
> summary(lm(wageloss~sevpay+age+female+highed+married+austrian+
   bluecollar+tukey1df(mod)))
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                                    3.774 0.000163 ***
             2856.3795 756.9425
(Intercept)
                         291.0163 3.259 0.001126 **
               948.5399
sevpay
tukey1df(mod)
                 1.8795
                         0.3063 6.136 9.31e-10 ***
Ouestion 1.7
> fm<-female*married</pre>
> summary(lm(wageloss~sevpay+age+female+highed+married+austrian+
```

Statistics 500 Fall 2014 Problem Set 2

```
bluecollar+fm))
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 3694.32 756.95 4.881 1.10e-06 ***
           1091.00
                        291.40
                                3.744 0.000184 ***
sevpay
....
fm
            1162.50
                        480.51 2.419 0.015596 *
Question 2.1
> which.max(hatvalues(mod))
659
659
> ccwSt500[659,]
   sevpay age female highed married austrian bluecollar priorwage
tenure uduration
                   wrk12 nextwage wage12 id
834
        0 49
                   1
                         0
                              1
                                          0
                                                     1 19698.12
23.22581 0.6451613 11.35484 772.9453 8776.669 659
> hatvalues(mod)[659]
       659
0.005571402
Question 2.3
> rstudent(mod)[393]
     393
-5.209135
> ccwSt500[393,]
   sevpay age female highed married austrian bluecollar priorwage
tenure uduration wrk12 nextwage wage12 id
492
      1 44
                  0 0 0
                                         1
                                                     0 1348.568
51.48387 0.4516129 11.54839 2427.689 28035.89 393
Question 2.4
> dim(ccwSt500)
[1] 3923
        14
> qt(0.025/3923,3914)
[1] - 4.370027
Question 2.5
> which.max(abs(dffits(mod)))
393
393
> dffits(mod)[393]
      393
-0.3108647
Question 2.7
> qqnorm(mod$resid)
> which.min(mod$resid)
393
393
> qqline(mod$resid)
```

PROBLEM SET #3 STATISTICS 500 FALL 2014: DATA PAGE 1 Due at noon Thursday, December 18, in my office, 473 JMHH. This is an exam. Do not discuss it with anyone.

Data set antineoplastic is adapted from an article by Kopjar and Garaj-Vrhovac in Mutagenesis (2001) vol 16, #1, pp 71-78, concerned with the possibility that working with antineoplastic drugs (i.e., cancer chemotherapies) might damage the DNA of the nurses and doctors. DNA damage is measured by the tail moment of the comet assay. In the comet assay, genetic material from a cell is placed in an electric field, which pulls DNA in one direction. DNA is a large and hard to move, but if some of the DNA is broken it moves more. The assay creates the appearance of a comet with a tail, intact DNA being in the comet's head, broken DNA in the tail. Large values of the tail moment y_{ij} are taken to mean greater DNA breakage, not a good thing. There are 3 groups of different people, i=1,2,3, each of size 20, j=1,...,20: (i) gloves = workers wearing gloves, (ii) hood = workers wearing gloves in a safety cabinet under a laminar hood in a that vents fumes upwards, (iii) control = individuals with no exposure to antineoplastic drugs. You should do boxplot(tailmoment~group) and think about what you see.

Model 1 says $y_{ij} = \mu + \gamma_i + \varepsilon_{ij}$ where ε_{ij} are iid $N(0,\sigma^2)$ and $\gamma_1 + \gamma_2 + \gamma_3 = 0$ **Hypothesis set A** has three hypotheses $A = \{H_{12}: \gamma_1 = \gamma_2, H_{13}: \gamma_1 = \gamma_3, H_{23}: \gamma_2 = \gamma_3\}$. Hypothesis set B is similar to hypothesis set A, but it is for the situation with 4 groups rather than the 3 groups in the antineoplastic data. **Hypothesis set B** has six hypotheses $B = \{H_{12}: \gamma_1 = \gamma_2, H_{13}: \gamma_1 = \gamma_3, H_{23}: \gamma_2 = \gamma_3, H_{14}: \gamma_1 = \gamma_4, H_{24}: \gamma_2 = \gamma_4, H_{34}: \gamma_3 = \gamma_4\}$. When a question asks about hypothesis set B, it is not a question about the antineoplastic data, but about some analogous situation with 4 groups instead of three.

Question 2.5 asks you to build two orthogonal contrasts, exp.control and glove.hood. It is an easy question, but if you mess it up, then you mess up several more questions.

The two contrasts you built in question 2.5 constitute 2 new variables. **Model 2** uses these two variables plus two more from the data set, namely age and smoker, which is 1 for a smoker, 0 for a nonsmoker. **Model 2** is:

tailmoment = $\beta_0 + \beta_1 \exp . \text{control} + \beta_2 \text{ glove} . \text{hood} + \beta_3 \text{ age} + \beta_4 \text{ smoker} + \epsilon_{ij}$ where ϵ_{ij} are iid N(0, σ^2).

Model 2 has 2^4 submodels formed by deleting predictors, including the model with all 4 predictors and the model with no predictors (just the constant).

Model 3 has

tailmoment = $\beta_0 + \beta_1 \exp . \text{control} + \beta_2 \text{ glove} . \text{hood} + \varepsilon_{ij}$ where ε_{ij} are iid N(0, σ^2), so it is like model 2, but without age and smoker.

Question 2.1 mentions the experimentwise error rate and the familywise error rate. These are two names for the same thing.

PROBLEM SET #3 STATISTICS 500 FALL 2014: DATA PAGE 2 This is an exam. Do not discuss it with anyone. Due at noon Thursday, December 18, in my office, 473 JMHH.

The data are in the object antineoplastic in the course workspace at <u>http://www-stat.wharton.upenn.edu/~rosenbap/</u>. You will have to download the workspace again to have the current version with antineoplastic. If you download the workspace and antineoplastic is not there, it probably means that you web browser remembers the last time you downloaded the file and thinks (incorrectly) that you do not need to download it again – in this case, clear the browser's memory and try again. There is a csv file antineoplastic.csv with the data at

http://stat.wharton.upenn.edu/statweb/course/Fall-2008/stat500/ if you wish to use software other than R. The csv file should open in excel and other packages.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

The exam is due Thursday, Dec 18, 2014 at noon. You may turn in the exam early by placing it in an envelope addressed to me and leaving it in my mail box in statistics, 4th floor, JMHH. If you prefer, give it to Noel at the front desk in statistics. **Make and keep a photocopy of your answer page**. The answer key will be posted in the revised bulk pack on-line. You can compare your photocopy to the on-line answer page.

HAVE A GREAT HOLIDAY!

Last name: First name	: ID#
PROBLEM SET #3 STATISTICS	500 FALL 2014: ANSWER PAGE 1
This is an exam. Do not discuss it with	anyone. Due noon Thursday, December 18.
Use the antineoplastic data and model 1 to	Fill in or CIRCLE the correct answer
answer the following questions.	
1.1 Assuming model 1 is true, test the null	
hypothesis H_0 : $\gamma_1 = \gamma_2 = \gamma_3 = 0$. Give the	Name: Value:
name of the test, the value of the test	
statistics, the degrees of freedom (DF), the	DF:P-value:
P-value and indicate whether the null	
hypothesis is plausible.	PLAUSIBLE NOT PLAUSIBLE
1.2 Assuming model 1 is true, use the	95% simultaneous interval: $\gamma_1 - \gamma_2$
Tukey method to build three simultaneous	$=\gamma_{\text{glove}} - \gamma_{\text{hood}}$
95% confidence intervals for $\gamma_1 - \gamma_2$, $\gamma_1 - \gamma_2$	
γ_3 , and γ_2 - γ_3 , but REPORT HERE ONLY	
the interval for $\gamma_1 - \gamma_2 = \gamma_{glove} - \gamma_{hood}$, being	
careful to get the sign (+/-) correct for	
glove-minus-hood. The interval suggests	TRUE FALSE
that people working with a hood and	
gloves had lower tail moments than	
people working with just gloves. (T or F)	
1.3 If model 1 were true, the three	
intervals in 1.2 would all cover their three	TRUE FALSE
parameters in at least 95% of experiments.	
1.4 Under model 1 for the antineoplastic	
data, if you used the t-test to compare two	3 group estimate DF3:
group means, but you used the three group	
pooled estimate of σ^2 , then what would be	2 group estimate DF2:
the degrees of freedom (DF3) for the test?	
What would the degrees of freedom (DF2)	3 group critical t :
be if you used just the data from the two	
groups being compared to estimate σ^2 ?	2 group critical t :
What is the two-sided 95% critical value	(This question asks about doing one t-test
for $ t $ for a single t-test with the	with DF3 or DF2 degrees of freedom. It
corresponding DF?	is NOT about testing several hypotheses.)
1.5 If you test k true null hypotheses, and	
there is probability λ that you reject each	TRUE FALSE
one, then you expect to reject λk of these	
true null hypotheses.	
1.6 Use Holm's method and the two-sided $\frac{2}{3}$	Give 3 adjusted p-values
pairwise t-test with pooled estimate of σ^2	H_{12} : $\gamma_1 = \gamma_2$ or $\gamma_{glove} = \gamma_{hood}$:
to test the three null hypothesis in	
hypothesis set A. Give the Holm-adjusted	H ₁₃ : $\gamma_1 = \gamma_3$, or $\gamma_{glove} = \gamma_{control}$:
p-values.	
	H ₂₃ : $\gamma_2 = \gamma_3$ }, or $\gamma_{\text{hood}} = \gamma_{\text{control}}$:

Due Last name:						
PROBLEM SET #3 STATISTICS : This is an exam. Do not discuss it with ar			500 FALL 2014: ANSWER PAGE 2			
Use model 1 and the antineople		F	ill in or C	CIRCLE th	le correc	t answer
answer the following questions						
2.1 If pairwise t-tests adjusted	•					
Bonferroni inequality reject a particular hypothesis with an experimentwise or			TRUE FALSI			С.Г.
• •		TRUE		E	FAL	SE
familywise error rate of 0.05, t						
method rejects that hypothesis						
2.2 Hypothesis set A could cor						
exactly 1 true hypothesis or ex	-		TDU	Г	TAT	с. Г
hypotheses or exactly 3 true hy	-		TRU	E	FAL	SE
which is why the R function de	eraults to					
Holm's method.	. •					
2.3 Hypothesis set B could con			TDU	F	TAT	a F
exactly 1 true and 5 false null h	* *		TRU	E	FAL	SE
2.4 In hypothesis set A for mod			TDU	F		a F
contrasts for Hypotheses H_{12} : γ	•		TRU	E	FAL	SE
H ₂₃ : $\gamma_2 = \gamma_3$ are two orthogonal						
2.5 Give two orthogonal contra						
integer weights for (a) exposed	-	а				
versus control, (b) glove only v	-					
plus hood. Fill in 6 integers as	contrast	b				
weights for 2 contrasts.			Glo			Control
3. Use model 1 and the contrast			o fill in t			a table.
	Sum of squ	ares	DF	Mean	Square	F
Between Groups						
Exposed versus Control						
Gloves versus Hood						
With Groups Residual						
Use models 2 and 3 for part 4.		F	ill in or C	CIRCLE th	le correc	t answer
4.1 Which of the 16 submodels	s of model	Variable in this model (list names):				nes):
2 has the smallest C_P ? List the	variables					
in this model, its size (1+#vars), the value					
of C _P .		Size	=	C_P=_		
4.2 What is the PRESS value f	or model 2		Μ	odel 2	Μ	lodel 3
and for model 3?		PRESS=				
4.3 How many observations ha	ve large					
1	1 00 1	۱ <i>۲</i> -	1.1.0.	٦ <i>4</i>	1.1.2.	

leverages or hatvalues in model 2? In
model 3? Give two counts.Model 2:_____ Model 3:____

4.4 Give the variance inflation factors for models 2 and 3.

Put in VIFs	exp.control	glove.hood	age	smoker
Model 2				
Model 3			XXXXXXXX	XXXXXXXX

Answers
PROBLEM SET #3 STATISTICS 500 FALL 2014: ANSWER PAGE 1
6 points each, except #3 which is 10 points

6 points each, excep	pt #3 which is 10 points
Use the antineoplastic data and model 1 to	Fill in or CIRCLE the correct answer
answer the following questions.	
1.1 Assuming model 1 is true, test the null	
hypothesis H_0 : $\gamma_1 = \gamma_2 = \gamma_3 = 0$. Give the	Name: F-test Value: 56.62
name of the test, the value of the test	
statistics, the degrees of freedom (DF), the	DF: 2 and 57 P-value: 2.86×10^{-14}
P-value and indicate whether the null	
hypothesis is plausible.	PLAUSIBLE NOT PLAUSIBLE
1.2 Assuming model 1 is true, use the	95% simultaneous interval: $\gamma_1 - \gamma_2$
Tukey method to build three simultaneous	$= \gamma_{\text{glove}} - \gamma_{\text{hood}}$
95% confidence intervals for $\gamma_1 - \gamma_2$, $\gamma_1 - \gamma_2$	
γ_3 , and γ_2 - γ_3 , but REPORT HERE ONLY	
the interval for $\gamma_1 - \gamma_2 = \gamma_{glove} - \gamma_{hood}$, being	.969 , 3.481
careful to get the sign (+/-) correct for	
glove-minus-hood. The interval suggests	TRUE FALSE
that people working with a hood and	
gloves had lower tail moments than	
people working with just gloves. (T or F)	
1.3 If model 1 were true, the three	\frown
intervals in 1.2 would all cover their three	TRUE FALSE
parameters in at least 95% of experiments.	<u> </u>
1.4 Under model 1 for the antineoplastic	3 group estimate DF3: $57 = 60-3$
data, if you used the t-test to compare two	2 group estimate DF2: $38 = 40-2$
group means, but you used the three group	3 group critical t : 2.002
pooled estimate of σ^2 , then what would be	2 group critical t : 2.024
the degrees of freedom (DF3) for the test?	
What would the degrees of freedom (DF2)	Once you have 38 DF for error, going to
be if you used just the data from the two	57 does not add much. And you have to
groups being compared to estimate σ^2 ?	assume the three groups have the same σ^2
What is the two-sided 95% critical value	to get the extra DF. The 2-group test
for $ t $ for a single t-test with the	doesn't assume anything about the third
corresponding DF?	group.
1.5 If you test k true null hypotheses, and	
there is probability λ that you reject each	TRUE FALSE
one, then you expect to reject λk of these	
true null hypotheses.	
1.6 Use Holm's method and the two-sided	Give 3 adjusted p-values
pairwise t-test with pooled estimate of σ^2	H ₁₂ : $\gamma_1 = \gamma_2$ or $\gamma_{glove} = \gamma_{hood}$: 7.7 x 10 ⁻⁵
to test the three null hypothesis in	14
hypothesis set A. Give the Holm-adjusted	H ₁₃ : $\gamma_1 = \gamma_3$, or $\gamma_{glove} = \gamma_{control}$: 1.4 x 10 ⁻¹⁴
p-values.	
	H_{23} : $\gamma_2 = \gamma_3$ }, or $\gamma_{hood} = \gamma_{control}$: 8.8 x 10 ⁻⁸

PROBLEM SET #3 STATISTICS 500 FALL 2014: ANSWER PAGE 2						E 2	
Use model 1 and the antineoplastic data to			to F	Fill in or CIRCLE the correct answer			
answer the follow	ving questions	5.					
2.1 If pairwise t-te	2.1 If pairwise t-tests adjusted by the						
Bonferroni inequa	ality reject a p	oarticular		\sim			
hypothesis with an	n experiment	wise or		TRUI	E)	FALS	E
familywise error r	-		's				
method rejects that							
2.2 Hypothesis set							
exactly 1 true hypothesis or exactly 2 true			e				
hypotheses or exa		-	-	TRU	е (FALS	E)
which is why the	• •	-		_			
Holm's method.							
2.3 Hypothesis set	t B could con	ntain			<u> </u>		
exactly 1 true and			5.	TRUI	E)	FALS	Е
2.4 In hypothesis		• •					
contrasts for Hype				TRU	е (FALS	е)
H_{23} : $\gamma_2 = \gamma_3$ are tw	•	•					
2.5 Give two orth							
integer weights fo			а	1	1		-2
versus control, (b)			u	1	1		2
plus hood. Fill in		-	b	1	-1		0
weights for 2 cont		contrast	U	Glov			Control
3. Use model 1 an		ts in quest	$\frac{1}{100}$ 2.5 t				
						unovu	tubic.
	id the contras					uare	F
		Sum of s	squares	DF	Mean Sq		F
Between Groups			squares 308.6	DF 2		154.3	56.6
Between Groups Exposed ver	rsus Control		squares 308.6 259.1	DF 2 1		154.3 259.1	56.6 95.1
Between Groups Exposed ver Gloves v	rsus Control versus Hood		squares 308.6 259.1 49.5	DF 2 1 1		154.3 259.1 49.5	56.6
Between Groups Exposed ver	rsus Control versus Hood		squares 308.6 259.1	DF 2 1		154.3 259.1	56.6 95.1
Between Groups Exposed ver Gloves v With Groups Resi	rsus Control versus Hood idual		aquares 308.6 259.1 49.5 155.3	DF 2 1 1 57	Mean Sq	154.3 259.1 49.5 2.72	56.6 95.1 18.2
Between Groups Exposed ver Gloves v With Groups Resi Use models 2 and	rsus Control versus Hood idual 3 for part 4.	Sum of s	aquares 308.6 259.1 49.5 155.3	DF 2 1 57 ill in or C	Mean Sq	154.3 259.1 49.5 2.72	56.6 95.1 18.2 answer
Between Groups Exposed ver Gloves v With Groups Resi Use models 2 and 4.1 Which of the	rsus Control versus Hood idual 13 for part 4. 16 submodels	Sum of s	aquares 308.6 259.1 49.5 155.3	DF 2 1 57 ill in or C able in th	Mean Sq IRCLE the dis model (lis	154.3 259.1 49.5 2.72	56.6 95.1 18.2 answer es):
Between Groups Exposed ver Gloves v With Groups Resi Use models 2 and 4.1 Which of the 2 has the smallest	rsus Control versus Hood idual 1 3 for part 4. 16 submodels c C _P ? List the	Sum of s	squares 308.6 259.1 49.5 155.3 F Vari	DF 2 1 57 ill in or C able in th	Mean Sq	154.3 259.1 49.5 2.72	56.6 95.1 18.2 answer es):
Between Groups Exposed ver Gloves v With Groups Resi Use models 2 and 4.1 Which of the 2 has the smallest in this model, its s	rsus Control versus Hood idual 1 3 for part 4. 16 submodels c C _P ? List the	Sum of s	squares 308.6 259.1 49.5 155.3 F Vari	DF 2 1 57 ill in or C able in th exp.co	Mean Sq IRCLE the o is model (li s ontrol and gl	154.3 259.1 49.5 2.72 correct st name	56.6 95.1 18.2 answer es):
Between Groups Exposed ver Gloves v With Groups Resi Use models 2 and 4.1 Which of the 2 has the smallest in this model, its s of C _P .	rsus Control versus Hood idual 1 3 for part 4. 16 submodels C _P ? List the size (1+#vars	Sum of s s of model variables), the valu	squares 308.6 259.1 49.5 155.3 F Vari e	DF 2 1 57 ill in or C able in th exp.cc Si	Mean Sq IRCLE the o is model (lis ontrol and gl ze= $3 C_P = 3$	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447	56.6 95.1 18.2 answer es): od
Between GroupsExposed verGloves vWith Groups ResiUse models 2 and4.1 Which of the2 has the smallestin this model, its sof CP.4.2 What is the PH	rsus Control versus Hood idual 1 3 for part 4. 16 submodels C _P ? List the size (1+#vars	Sum of s s of model variables), the valu	squares 308.6 259.1 49.5 155.3 F Vari e 2	DF 2 1 57 ill in or C able in th exp.cc Si M	Mean Sq IRCLE the of is model (lis ontrol and gl ze= $3 C_P = 3$ odel 2	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo	56.6 95.1 18.2 answer es): od
Between GroupsExposed verGloves vWith Groups ResiUse models 2 and4.1 Which of the2 has the smallestin this model, its sof Cp.4.2 What is the PIand for model 3?	rsus Control versus Hood idual 1 3 for part 4. 16 submodels 2 C _P ? List the size (1+#vars RESS value for	Sum of s s of model variables), the valu	Squares 308.6 259.1 49.5 155.3 F Vari e 2 PRE	DF 2 1 1 57 ill in or C able in th exp.cc Si Mc SS= 17	Mean Sq IRCLE the one is model (lis is model (lis ontrol and gl $ze=3 C_P=2$ odel 2 7.8	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo	56.6 95.1 18.2 answer es): od
Between GroupsExposed verGloves vWith Groups ResidentUse models 2 and4.1 Which of the2 has the smallestin this model, its soof Cp.4.2 What is the PFand for model 3?4.3 How many ob	rsus Control versus Hood idual 1 3 for part 4. 16 submodels C _P ? List the size (1+#vars RESS value for pservations ha	Sum of s Sum of s s of model variables), the valu or model 2 ave large	squares 308.6 259.1 49.5 155.3 F Vari e PRE Mod	DF 2 1 1 57 ill in or C able in th exp.cc Si Mc SS= 17 lel 2: 1 1	Mean SqIRCLE the original integrationIRCLE the original integrationis model (list colspan="2">Is colspan="2">Is colspan="2">CP= 2is model (list colspan="2")is model 27.8Model 3: 0	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo 1 ⁷	56.6 95.1 18.2 answer es): od odel 3 72.1
Between GroupsExposed verGloves vGloves vWith Groups ResiUse models 2 and4.1 Which of the2 has the smallestin this model, its sof CP.4.2 What is the PHand for model 3?4.3 How many obleverages or hatva	rsus Control versus Hood idual 1 3 for part 4. 16 submodels C _P ? List the size (1+#vars RESS value for pservations ha	Sum of s Sum of s s of model variables), the valu or model 2 ave large	Squares 308.6 259.1 49.5 155.3 F Vari e PRE Mod With	DF 2 1 1 57 ill in or C able in th exp.cc Si Mc SS= 17 lel 2: 1 nout age a	Mean Sq Mean Sq IRCLE the distribution is model (lis ontrol and gl ze= 3 $C_P=3$ odel 2 7.8 Model 3: 0 nd smoker,	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo 1 ⁷ the desi	56.6 95.1 18.2 answer es): od odel 3 72.1
Between GroupsExposed verGloves vGloves vWith Groups ResiUse models 2 and4.1 Which of the 12 has the smallestin this model, its sof Cp.4.2 What is the PIand for model 3?4.3 How many obleverages or hatvamodel 3? Give two	rsus Control versus Hood idual 1 3 for part 4. 16 submodels CP? List the size (1+#vars RESS value for pservations ha alues in mode vo counts.	Sum of s Sum of s s of model e variables), the valu for model 2 ave large el 2? In	Squares 308.6 259.1 49.5 155.3 F Vari e PRE Mod With bala	$\frac{\text{DF}}{2}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$	Mean SqIRCLE the original integrationis model (list colspan="2">Is colspan="2">Is colspan="2"is model (list colspan="2")is model 27.8Model 3: 0	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo 1 ⁷ the desi	56.6 95.1 18.2 answer es): od odel 3 72.1
Between GroupsExposed verGloves vWith Groups ResiUse models 2 and4.1 Which of the2 has the smallestin this model, its sof CP.4.2 What is the PHand for model 3?4.3 How many obleverages or hatvamodel 3? Give tw4.4 Give the varia	rsus Control versus Hood idual 1 3 for part 4. 16 submodels CP? List the size (1+#vars RESS value for pservations ha alues in mode vo counts.	Sum of s Sum of s s of model variables), the valu for model 2 ve large el 2? In factors fo	Squares 308.6 259.1 49.5 155.3 F Vari e PRE Mod With bala	$\frac{\text{DF}}{2}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{57}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{2}$	Mean Sq Mean Sq IRCLE the distribution is model (lis ontrol and gl ze= 3 $C_P=3$ odel 2 7.8 Model 3: 0 nd smoker,	154.3 259.1 49.5 2.72 correct st name ove.hoo 3.447 Mo 1 ⁷ the desi	56.6 95.1 18.2 answer es): od odel 3 72.1 ign is

1.057

1.000

1.170

XXXXXXXX

1.432

XXXXXXXX

Model 2

Model 3

1.458

1.000

Answers
PROBLEM SET #3 STATISTICS 500 FALL 2014: ANSWER PAGE 2

DOING THE PROBLEM SET IN R

```
Problem Set 3, Fall 2014, Statistics 500, Answers
1.1
> summary(aov(tailmoment~group))
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
             2 308.6 154.29 56.62 2.86e-14 ***
group
            57 155.3
                          2.72
Residuals
1.2
> TukeyHSD(aov(tailmoment~group))
Tukey multiple comparisons of means 95% family-wise confidence
level
Fit: aov(formula = tailmoment ~ group)
$group
                 diff
                             lwr
                                        upr
                                              p adj
hood-glove
              -2.2250 -3.481165 -0.9688347 2.24e-04
control-glove -5.5205 -6.776665 -4.2643347 0.00e+00
control-hood -3.2955 -4.551665 -2.0393347 1.00e-07
1.4
> qt(.025,57)
[1] -2.002465
> qt(.025,38)
[1] -2.024394
1.5 (Holm method is the default)
> pairwise.t.test(tailmoment,group)
        Pairwise comparisons using t tests with pooled SD
        glove hood
        7.7e-05 -
hood
control 1.4e-14 8.8e-08
P value adjustment method: holm
3.
> exp.control<-c(1,1,-2)</pre>
> glove.hood<-c(1,-1,0)</pre>
> contrasts(group)<-cbind(exp.control,glove.hood)</pre>
> contrasts(group)
        exp.control glove.hood
glove
                  1
                              1
hood
                  1
                             -1
control
                 -2
                              0
> mm<-model.matrix(aov(tailmoment~group))</pre>
> head(mm)
  (Intercept) groupexp.control groupglove.hood
1
                              1
                                              1
            1
2
            1
                              1
                                              -1
            1
                             -2
                                              0
3
> is.data.frame(mm)
[1] FALSE
```

Problem Set 3, Fall 2014, Statistics 500, Answers continued > mm<-as.data.frame(mm)</pre> > attach(mm) > anova(lm(tailmoment~groupexp.control+groupglove.hood)) Df Sum Sq Mean Sq F value Pr(>F) groupexp.control 1 259.073 259.073 95.076 9.408e-14 *** 1 49.506 49.506 18.168 7.678e-05 *** groupglove.hood Residuals 57 155.320 2.725 Because contrasts are orthogonal, order does not matter: > anova(lm(tailmoment~groupglove.hood+groupexp.control)) Df Sum Sq Mean Sq F value Pr(>F) 1 49.506 49.506 18.168 7.678e-05 *** groupglove.hood groupexp.control 1 259.073 259.073 95.076 9.408e-14 *** 57 155.320 2.725 Residuals > library(leaps) > x<-cbind(groupexp.control,groupglove.hood,age,smoke)</pre> > mod<-leaps(x=x,y=tailmoment,names=colnames(x))</pre> > cbind(mod\$which,mod\$size,mod\$Cp) groupexp.control groupglove.hood age smoke 0 2 114.906221 1 0 0 1 1 1 0 03 3.446797 2 2 1 0 1 03 17.478437 2 1 0 0 1 3 20.867206 2 0 1 1 03 96.002119 3 1 1 1 04 4.204977 3 1 1 0 14 4.556732 1 4 1 1 15 5.000000 > modfull<-</pre> lm(tailmoment~groupexp.control+groupglove.hood+age+smoke) > library(DAAG) > press(modfull) [1] 177.8312 > press(lm(tailmoment~groupexp.control+groupglove.hood)) [1] 172.0993 > vif(modfull) groupexp.control groupglove.hood age smoke 1.4584 1.0568 1.1699 1.4316 > vif(lm(tailmoment~groupexp.control+groupglove.hood)) groupexp.control groupglove.hood 1 1 > summary(hatvalues(modfull)) Mean 3rd Qu. Min. 1st Qu. Median Max. 0.05007 0.07058 0.08064 0.08333 0.09565 0.17330 > 2*0.08333 [1] 0.16666 > summary(hatvalues(lm(tailmoment~groupexp.control+groupglove.hood))) Min. 1st Ou. Median Mean 3rd Qu. Max. 0.05 0.05 0.05 0.05 0.05 0.05

PROBLEM SET #1 STATISTICS 500 FALL 2015: DATA PAGE 1 Due in class at noon in class on Tuesday 13 October 2015 This is an exam. Do not discuss it with anyone.

The data are selected for illustration from a study by Tager et al (1979), *American Journal of Epidemiology*, 110, 15-26, but have been substantially simplified. The data concern fev = forced expiratory volume of children measured in liters, which is an index of pulmonary function and is the volume of air expelled after 1 second of constant effort. Other variables are age of the child in years, height of the child in inches, female = 1 for female, 0 for male, and smoker = 1 if current smoker, 0 if not a current smoker. Each row of data is a different child.

The data are in an object called rfev2 in the course workspace at <u>http://www-stat.wharton.upenn.edu/~rosenbap/</u> If you are not using R, then the link data.csv on the same page will give you the data as a csv-file that many programs can read, including excel.

```
> head(rfev2)
       id fev age height female smoker
    301 1.708 9 57.0
1
                                                      1
                                                                           0
2 451 1.724 8 67.5
                                                          1
                                                                          0

      3
      501
      1.720
      7
      54.5

      4
      642
      1.558
      9
      53.0

      5
      901
      1.895
      9
      57.0

      6
      1701
      2.336
      8
      61.0

                                                          1
                                                                          0
                                                           0
                                                                          0
                                                           0
                                                                          0
                                                                           0
                                                            1
> dim(rfev2)
[1] 654
                     6
```

Model 1: fev = $\beta_0 + \beta_1$ age + β_2 height + ε where ε is iid N(0, σ^2)

Model 2: fev = $\gamma_0 + \gamma_1$ age + γ_2 height + γ_3 female + ζ where ζ is iid N(0, ω^2) Model 1 has betas and model 2 has gammas so that different things have different symbols. It does not matter which Greek letter we use.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, answer every part. Turn in only the answer page. Do not turn in additional pages. Do not turn in graphs. Brief answers suffice. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you circle the correct answer and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. Do not discuss the exam with anyone. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Last name:	Last name: First Name:	
ID#:		
Statistics 500, Problem 1, Fall 2015, p1. This problem set is an exam. Do not discuss it with anyone		
Fit model 1 from the data page and use it	anyone. Fill in or circle the correct answer	
to answer the questions in part 1.		
1.1 In model 1, what is the numerical		
value of the estimate of σ ?	Estimate of σ :	
1.2 Under model 1, give the 95% two-		
sided confidence interval for the	95% CI: [,]	
coefficient of age, β_1 .	95% CI. [,]	
1.3 In model 1, test the null hypothesis that		
the coefficient of height, β_2 , is zero,	Name: Value:	
$H_0: \beta_2=0.$ Give the name of the test	Name Value	
H_0 , $p_2=0$. Give the name of the test statistic, the numerical value of the test	DF: P-value:	
	Circle one:	
statistic, its degrees of freedom (DF), its two-sided P-value, and state whether the	H_0 is PLAUSIBLE NOT	
	PLAUSIBLE	
null hypothesis is plausible.	TEROSIDEE	
1.4 In model 1, test the null hypothesis that		
both slopes are zero, H_0 : $\beta_1=\beta_2=0$. Give	Name: Value:	
the name of the test statistic, the numerical		
value of the test statistic, its degrees of	DF: P-value:	
freedom (DF), its two-sided P-value, and	Circle one:	
state whether the null hypothesis is	H_0 is PLAUSIBLE NOT	
plausible.	PLAUSIBLE	
r mart to		
1.5 In model 1, the correlation between fev	Circle one:	
and fitted fev (i.e., yhat) is 0.7664.	TRUE FALSE	
	r	
Use the residuals from model 1 on the data	Fill in or circle the correct answer	
page to answer questions in part 2.		
2.1 Do a normal plot, a boxplot, and a	Circle the LETTER for each true statement	
Shapiro-Wilk test using the residuals from	a. The residuals look Normal.	
model 1.	b. The residuals have a short right tail	
	and a long left tail compared to the	
Circle the letters of true statements,	Normal.	
perhaps more than one, perhaps none.	c. The residuals have a long right tail	
E.g., you might circle a. if you thought a	and a long left tail compared to the	
was true and the rest false.	Normal.	
	d. The Shapiro-Wilk tests accepts	
	Normality as a plausible distribution	
2.2 Plot residuals as y against fitted values	for the residuals. Circle the LETTER for each true statement	
2.2 Plot residuals as y against fitted values as x. Add the lowess smooth. Plot	Choice the LETTER for each true statement	
	a The lowers smooth of the plot	
residuals as y against height as x. Add the	a. The lowess smooth of the plot	

lowess smooth. Use round() to round the fitted values to integers, forming 4 groups,	against height clearly exhibits an <i>inverted</i> (i.e., upside down) U-	
1, 2, 3, and 4; then, boxplot the residuals in	shape, indicating nonlinearity.	
these four groups.		
	b. The plots and boxplots clearly	
Circle the letters of true statements,	indicate that the assumption of	
perhaps more than one, perhaps none.	constant variance is correct.	
2.3 The child with the largest absolute	Circle one:	
residual is 15 years old, 69 inches tall, with	TRUE FALSE	
the largest fev in the data set.		

ID#:_

Last name:_____ First Name: _____

Statistics 500, Problem 1, Fall 2015, p2. This problem set is an exam. Do not discuss it with anyone.

Fit model 2 and use it for questions in part 3.	Fill in or circle the correct answer	
3.1 In model 2, female children are estimated to have a higher fev than male children of the same height and age.	Circle one TRUE FALSE	
3.2 In model 2, test the null hypothesis that the coefficient of age and the coefficient of female are both zero, H ₀ : γ_1 = $\gamma_3 = 0$. Give the name of the test statistic, the numerical value of the test statistic, its degrees of freedom (DF), its two-sided P-value, and state whether the null hypothesis is plausible.	Name: Value: DF: P-value: Circle one: H ₀ is PLAUSIBLE NOT PLAUSIBLE	
3.3 For the hypothesis tested in question 3.2, fill in the following ANOVA = analysis of variance table. In the table, SS means sum-of-squares, DF means degrees-of-freedom, and MS means mean- square.	SSDFMSFull ModelReducedModelAddedvariablesResidual	
3.4 Using model 2, give a 2-sided 95% confidence interval for location of the regression surface (ie, the fitted fev value) for a female, 5 foot 3 inches tall, age 15.	95% Interval [,]	
3.5 Using model 2, give a 2-sided 95% interval for the fev for a new child who is a female, 5 foot 3 inches tall, age 15. This new child would be in addition to the 654 children in the data set, but is imagined to follow the same model 2.	95% Interval [,]	

3.6 If the number of children in the data set, currently 654, where to increase and	Circl	e one	
increase but always follow the same model 2, then the interval in question 3.4 would shrink to a point, but the interval in question 3.5 would not.	TRUE	FALSE	

Part 4 asks hypothetical questions.	Circle the correct answer
4.1 In some data set, it could happen that a	Circle one
test of	
H ₀ : $\gamma_1 = \gamma_3 = 0$, as in part 3.2, could reject at	TRUE FALSE
the 0.05 level, but two separate test of H_0 :	
$\gamma_1 = 0$ and	
$H_0: \gamma_3 = 0$ in the same model could both	
accept at the two-sided 0.05 level.	
4.2 The actual study from which these data	Circle one
were selected measured each child at	
several ages to study growth in fev.	TRUE FALSE
Imagine having 654 children, each	
measured at 3 ages, and fitting model 2 to	
these $654x3 = 1962$ measurements. A	
problem with model 2 is that it is not very	
plausible that 3 fev's from one child at 3	
ages will be independent.	

Statistics 500, Fall 2105, Problem 1, Answers (6 points each except as noted)

Fit model 1 from the data page and use it to	Fill in or circle the correct answer
answer the questions in part 1.	
1.1 In model 1, what is the numerical value	
of the estimate of σ ?	Estimate of σ : 0.4197
1.2 Under model 1, give the 95% two-sided	
confidence interval for the coefficient of	95% CI: [0.0364, 0.0722]
age, β_1 .	
1.3 In model 1, test the null hypothesis that	t-DF are DF for σ^2 , here 651.
the coefficient of height, β_2 , is zero,	Name: t-statistic Value: 23.263
H ₀ : $\beta_2=0$. Give the name of the test	DF: 651 P-value: $< 2 \times 10^{-16}$
statistic, the numerical value of the test	Circle one:
statistic, its degrees of freedom (DF), its	H_0 is PLAUSIBLE NOT
two-sided P-value, and state whether the	PLAUSIBLE
null hypothesis is plausible.	
1.4 In model 1, test the null hypothesis that	
both slopes are zero, $H_0: \beta_1 = \beta_2 = 0$. Give	Name: F-statistic Value: 1068
the name of the test statistic, the numerical	DF: 2 and 651 P-value: $< 2.2 \times 10^{-16}$
value of the test statistic, its degrees of	Circle one:
freedom (DF), its two-sided P-value, and	H ₀ is PLAUSIBLE NOT

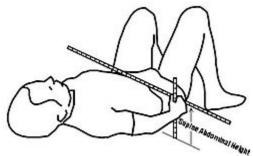
state whether the null hypothesis is plausible.	PLAUSIBLE	
1.5 In model 1, the correlation between fev	Circle one:	
and fitted fev (i.e., yhat) is 0.7664.	TRUE FALSE	
Use the residuals from model 1 on the data	Fill in or circle the correct answer	
page to answer questions in part 2.		
2.1 Do a normal plot, a boxplot, and a	Circle the LETTER for each true statement	
Shapiro-Wilk test using the residuals from	e. The residuals look Normal.	
model 1.	f. The residuals have a short right tail	
	\frown and a long left tail compared to the	
Circle the letters of true statements,	Normal.	
perhaps more than one, perhaps none.	g. The residuals have a long right tail	
E.g., you might circle a. if you thought a	and a long left tail compared to the	
was true and the rest false.	Normal.	
	h. The Shapiro-Wilk tests accepts	
	Normality as a plausible distribution	
	for the residuals.	
2.2 Plot residuals as y against fitted values as x. Add the lowess smooth. Plot	Circle the LETTER for each true statement	
residuals as y against height as x. Add the	c. The lowess smooth of the plot	
lowess smooth. Use round() to round the	against height clearly exhibits an	
fitted values to integers, forming 4 groups,	inverted (i.e., upside down) U-	
1, 2, 3, and 4; then, boxplot the residuals in	shape, indicating nonlinearity.	
these four groups.		
	d. The plots and boxplots clearly	
Circle the letters of true statements,	indicate that the assumption of	
perhaps more than one, perhaps none.	constant variance is correct.	
2.3 The child with the largest absolute	Circle one:	
residual is 15 years old, 69 inches tall, with the largest fev in the data set.	TRUE FALSE	

Fit model 2 and use it in part 3.	Fill in or	circle the co	orrect a	nswer
3.1 In model 2, female children are	Circle one			
estimated to have a higher fev than male	TRU	A	FALSE	\mathbf{E}
children of the same height and age.			\smile	
3.2 In model 2, test the null hypothesis	An F has (numerator, denominator) DF-2			DF-2
that the coefficient of age and the	numbers.	···· , ··· -	,	
coefficient of female are both zero, H_0 :	Name: F-statistic Value: 30.213			3
$\gamma_1 = \gamma_3 = 0$. Give the name of the test	Name. 1-statistic Value. 50.215			-
statistic, the numerical value of the test	DF: 2 and 650	P-value:	2.	84×10^{-1}
statistic, its degrees of freedom (DF), its	13	1 varaet	2.	01 11 10
two-sided P-value, and state whether the		Circle one	e:	
null hypothesis is plausible. (8 points)	H_0 is PLAUSE		NOT	Г
	PLAUSIBLE			-
3.3 For the hypothesis tested in question		SS	DF	MS
3.2, fill in the following ANOVA =	Full Model	380.27	3	126.76
analysis of variance table. In the table,				
SS means sum-of-squares, DF means	Reduced	369.99	1	369.99
degrees-of-freedom, and MS means	Model			
mean-square. (8 points)	Added	10.28	2	5.14
	variables			
	Residual	110.65	650	0.170
3.4 Using model 2, give a 2-sided 95%				
confidence interval for location of the	95% Interval [2.97, 3.	14]	
regression surface (ie, the fitted fev				
value) for a female, 5 foot 3 inches tall,				
age 15.				
3.5 Using model 2, give a 2-sided 95%				
interval for the fev for a new child who				
is a female, 5 foot 3 inches tall, age 15.	95% Interval [2.24, 3.	87]	
This new child would be in addition to				
the 654 children in the data set, but is				
imagined to follow the same model 2.				
3.6 If the number of children in the data	With more an			
set, currently 654, where to increase and	line is, but	not where a		hild is.
increase but always follow the same		Circle on		
model 2, then the interval in question 3.4	TRU		FALSE	L
would shrink to a point, but the interval				
in question 3.5 would not.				

Part 4 asks hypothetical questions.	Circle the correct answer
4.1 In some data set, it could happen that a	This might happen if x_1 and x_3 are highly
test of	correlated.
H ₀ : $\gamma_1 = \gamma_3 = 0$, as in part 3.2, could reject at	FALSE
the 0.05 level, but two separate test of H_0 :	

```
\gamma_1 = 0 and
H_0: \gamma_3 = 0 in the same model could both
accept at the two-sided 0.05 level.
4.2 The actual study from which these data
                                                 Circle one
were selected measured each child at
                                            RUE
several ages to study growth in fev.
                                                        FALSE
Imagine having 654 children, each
                                    Multiple measures on each child are called
measured at 3 ages, and fitting model 2 to
                                    "repeated measures" or "panel data" or
these 654x3 = 1962 measurements. A
                                    "longitudinal data," and typically cannot be
                                    viewed as independent observations,
problem with model 2 is that it is not very
plausible that 3 fev's from one child at 3
                                    violating an assumption of regression.
ages will be independent.
Statistics 500, Problem 1, Fall 2015: Doing the Problem Set
                                in R.
1.
> mdl<-lm(fev~age+height)</pre>
> summary(md1)
lm(formula = fev ~ age + height)
               Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.610466
                            0.224271 -20.558 < 2e-16
               0.054281
                            0.009106
                                         5.961 4.11e-09 ***
aqe
               0.109712
                                        23.263
height
                            0.004716
                                                 < 2e-16 ***
Residual standard error: 0.4197 on 651 degrees of freedom
Multiple R-squared: 0.7664,
                                     Adjusted R-squared: 0.7657
F-statistic: 1068 on 2 and 651 DF, p-value: < 2.2e-16
> confint(md1)
                     2.5 %
                                  97.5 %
(Intercept) -5.05084726 -4.17008507
               0.03639976 0.07216159
age
height
               0.10045104 0.11897263
> cor(mdl$fitted,fev)
[1] 0.8754474
> cor(mdl$fitted,fev)^2
[1] 0.7664081
                  This is R^2, not R.
2.
> boxplot(md1$resid)
> qqnorm(mdl$resid)
> gqline(md1$resid)
> shapiro.test(md1$resid)
         Shapiro-Wilk normality test
data:
        md1$resid
W = 0.9865, p-value = 9.794e-06
> plot(md1$fit,md1$resid)
> lines(lowess(md1$fit,md1$resid),col="red")
> plot(height,md1$resid)
> lines(lowess(height,md1$resid),col="red")
```

```
3.1
> md2<-lm(fev~age+height+female)</pre>
> summary(md2)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -4.287448 0.230253 -18.621 < 2e-16 ***
           0.061364 0.009069 6.766 2.96e-11 ***
age
          0.104560 0.004756 21.986 < 2e-16 ***
height
female -0.161112 0.033125 -4.864 1.45e-06 ***
Residual standard error: 0.4126 on 650 degrees of freedom
Multiple R-squared: 0.7746, Adjusted R-squared: 0.7736
F-statistic: 744.6 on 3 and 650 DF, p-value: < 2.2e-16
3.2-3.3
> mdh<-lm(fev~height)</pre>
> anova(mdh,md2)
Analysis of Variance Table
Model 1: fev ~ height
Model 2: fev ~ age + height + female
 Res.Df RSS Df Sum of Sq F Pr(>F)
     652 120.93
1
2
     650 110.65 2 10.286 30.213 2.84e-13 ***
3.4
> predict(md2,data.frame(age=15,height=63,female=1),interval="confidence")
       fit
               lwr
                         upr
1 3.059155 2.973354 3.144956
3.5
> predict(md2,data.frame(age=15,height=63,female=1),interval="prediction")
       fit lwr upr
1 3.059155 2.244461 3.873849
```


PROBLEM SET #2 STATISTICS 500 FALL 2015: DATA PAGE 1 Due in class at noon in class on Tuesday 24 November 2015 This is an exam. Do not discuss it with anyone.

The data are from the 2013-2014 NHANES. The data are in an object nhanes1314st500 in the course workspace. It is also available from my web page as data.csv > dim(nhanes14st500)

```
[1] 4576 13
> head(nhanes14st500)
    seqn lbxgh female age systolic diastolic pulse weight height bmi waist sad

Y
1 73557 13.9 0 69 122 72 86 78.3 171.3 26.7 100.0 20.5 1.23443
06
2 73558 9.1 0 54 156 62 74 89.5 176.8 28.6 107.6 24.2 0.74297
55
```

The variables are as follows. (i) seqn is the NHANES id number, (ii) lbxgh is a measure of glycohemoglobin, recorded as a percent, where high values, above 6.5, are indicative of diabetes, (iii) female = 1 for female, 0 for male, (iv) age is in years, (v) systolic and diastolic record blood pressure, (vi) pulse is pulse, (vii) weight is recorded in kilograms, (viii) height, waist circumference and sad are recorded in centimeters. sad is sagittal abdominal diameter, the height indicated below – it is thought to be an improvement on "bmi" = body mass index as a measure of health risk.

The final variable, y, is just a transformation of lbxgh obtained as follows. For your work, you can use y as instructed without considering yjPower. The yjPower function is extends the Box-Cox transformation to permit both positive and negative values and is described in Yeo and Johnson (2000); however, there is no need to consult this paper unless you want to.

```
> library(car)
```

```
> help("yjPower")
```

```
> y<-yjPower(lbxgh-6.5,0,jacobian.adjusted = TRUE)</pre>
```

I suggest doing the following plots to understand how y relates to lbxgh. Notice that y>0 if and only if lbxgh>6.5, so both are values consistent with diabetes.

```
> par(mfrow=c(1,2))
```

- > boxplot(lbxgh)
- > boxplot(y)
- > plot(lbxgh,y)
- > abline(h=0)
- > abline(v=6.5)

Yeo, In-Kwon and Johnson, Richard (2000) A new family of power transformations to improve normality or symmetry.*Biometrika*, 87, 954-959.

PROBLEM SET #2 STATISTICS 500 FALL 2015: DATA PAGE 2 Due in class at noon in class on Tuesday 24 November 2015 This is an exam. Do not discuss it with anyone.

You do not have to look at the following web pages unless you want to. The first describes lbxgh and suggests 6.5% as distinguishing diabetes. The second provides general information about NHANES.

http://www.niddk.nih.gov/health-information/health-topics/diagnostic-tests/a1c-testdiabetes/Pages/index.aspx

http://www.cdc.gov/nchs/nhanes.htm

You will be comparing sad and bmi as predictors of lbxgh, adjusting for age and gender.

Model 1: $lbxgh = \beta_0 + \beta_1$ female $+\beta_2$ age $+\beta_3$ bmi $+\beta_4$ sad $+\varepsilon$ where ε is iid N(0, σ^2)

Model 2: $y = \gamma_0 + \gamma_1$ female $+ \gamma_2$ age $+ \gamma_3$ bmi $+ \gamma_4$ sad $+ \zeta$ where ζ is iid N(0, ω^2) Model 1 has betas and model 2 has gammas so that different things have different symbols. It does not matter which Greek letter we use.

Question 1 asks you to compare plots of studentized residuals for models 1 and 2. The best way to compare the plots is to use par(mfrow=c(1,2)) to put two plots right next to each other. When thinking about Normal plots, it is often helpful to add the qqline, and to do the Shapiro-Wilk test, so do that here.

Note!: If a test can be done either as a t-test or as an F-test with equivalent results, do it as a t-test.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, **answer every part**. Turn in **only the answer page**. Do not turn in additional pages. Do not turn in graphs. **Brief answers suffice**. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you **circle the correct answer** and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. **This is an exam**. **Do not discuss the exam with anyone**. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

Last name:	_ First Name:
ID#:	
	his problem set is an exam. Do not discuss anyone.
1. Fit models 1 and 2 from the data page.	CIRCLE/FILL IN THE CORRECT
In question 1, always use the studentized	ANSWER
residuals from rstudent(.)	
1.1 Compare the Normal plots of	
studentized residuals from models 1 and 2,	
and do the Shapiro-Wilk test on the	TRUE FALSE
studentized residuals. Is this true? "Neither	
set of studentized residuals looks Normal,	
but the Normal plot is closer to a line for	
model 2 than for model 1."	
1.2 The Normal plot of studentized	
residuals from model 1 shows them to be	TRUE FALSE
skewed right compared to the Normal	
distribution.	
1.3 The Normal plot of studentized	
residuals from model 2 shows the residuals	TRUE FALSE
to have shorter tails than the Normal	
distribution.	
1.4 Compare the boxplots of studentized	
residuals from models 1 and 2. Is this true?	TRUE FALSE
"The studentized residuals from model 1	
look more nearly symmetric about their	
median than the residuals from model 2."	
1.5 If you were to test for outliers in model	Model 1.
1 at the two-sided 0.05 level using the	Critical value:
Bonferonni adjustment, what is the critical	
value that an absolute studentized residual	Degrees of freedom:
needs to exceed to be declared an outlier?	
What are the degrees of freedom? How	Number of outliers:
many outliers are there?	
1.6 If you were to test for outliers in model	Model 2.
2 at the two-sided 0.05 level using the	Critical value:
Bonferonni adjustment, what is the critical	
value that an absolute studentized residual	Degrees of freedom:
needs to exceed to be declared an outlier?	
What are the degrees of freedom? How	Number of outliers:
many outliers are there?	
2. Use model 2 in part 2.	
2.1 In model 2, which observation has the	

largest leverage? Give the row #. What is the numerical value of the leverage?

Row #_____ Leverage

value:_____

2.2 The person identified in 2.1 has large leverage because, despite having a high	TRUE FALSE
bmi and sad, the person does not have	
lbxgh>6.5 or y>0.	
2.3 How many individuals have large	
leverage by our standard rule of thumb?	How many?
Give one number.	
2.4 If you added 1 to the y for the person	
identified in question 2.1 and reran the	TRUE FALSE
regression with this new y, the predicted	
value or yhat for this person would	
increase by more than 0.5.	

Last name:_____ First Name: _____ ID#:____

Statistics 500, Problem 2, Fall 2015, p2. This problem set is an exam. Do not discuss it with anyone.

3. Question 3 asks about model 2.	CIRCLE /FILL IN THE CORRECT ANSWER	
3.1 Which observation has the largest absolute value of dffits? Give a row number. What is the value (with its sign) of the dffits?	Row # dffits:	
3.2 The individual in 3.1 has a large dffits because she has the lowest lbxgh and y in the data set and the highest sad.	TRUE FALSE	
3.2 Using dfbetas, the individual in 3.1 is seen to move the coefficient of sad by half its standard error.	TRUE FALSE	
:		

4. Question 4 asks about model 2 and its	CIRCLE/FILL IN THE CORRECT
extensions.	ANSWER
4.1 In model 2, test for interaction between	
sad and female. What is the name of the	Name: Value:
test statistic? What is the numerical value	
of the test statistic? What is P-value? Is it	
plausible that there is no interaction	P-value:
between sad and female?	Circle one
	PLAUSIBLE NOT PLAUSIBLE
4.2 In model 2, use a centered quadratic	
term in sad to test whether the relationship	Name: Value:
with sad is linear. What is the name of the	
test statistic? What is the numerical value	
of the test statistic? What is P-value? Is it	P-value:
plausible that relationship between y and	Circle one
sad is linear?	PLAUSIBLE NOT PLAUSIBLE
4.3 Use Tukey's one-degree of freedom	
method to test the null hypothesis that no	P-value:
transformation of y is needed in model 2.	Circle one
What is the P-value? Is the null hypothesis	PLAUSIBLE NOT PLAUSIBLE
plausible	
4.4 The original question is whether sad is	
better than bmi at predicting diabetes. In	TRUE FALSE
the fit of model 2, it is clear that sad is not	
needed as predictor of y if you have bmi,	
age and female.	

4.5 Give the squared multiple correlation, R^2 , for models 1 and 2.	$\begin{array}{c} \text{Model 1 } R^2: \underline{\qquad} \\ R^2: \underline{\qquad} \end{array} \qquad \text{Model 2}$
4.6 If you plot residuals of model 2 (as y) against fitted values from model 2 (as x) and add a lowess smooth, you see a dramatic inverted-U shape.	TRUE FALSE

Statistics 500, Problem 2, Fall 2015, p1. The it with	is problem set is an exam. Do not discuss anyone.	
1. Fit models 1 and 2 from the data page.	CIRCLE/FILL IN THE CORRECT	
In question 1, always use the studentized	ANSWER	
residuals from rstudent(.) (5		
points each)		
1.1 Compare the Normal plots of		
studentized residuals from models 1 and 2,	\frown	
and do the Shapiro-Wilk test on the	(TRUE) FALSE	
studentized residuals. Is this true? "Neither		
set of studentized residuals looks Normal,		
but the Normal plot is closer to a line for		
model 2 than for model 1."		
1.2 The Normal plot of studentized		
residuals from model 1 shows them to be	(TRUE) FALSE	
skewed right compared to the Normal		
distribution.		
1.3 The Normal plot of studentized		
residuals from model 2 shows the residuals	TRUE (FALSE)	
to have shorter tails than the Normal		
distribution.		
1.4 Compare the boxplots of studentized	\frown	
residuals from models 1 and 2. Is this true?	TRUE (FALSE)	
"The studentized residuals from model 1		
look more nearly symmetric about their		
median than the residuals from model 2."		
1.5 If you were to test for outliers in model	Model 1.	
1 at the two-sided 0.05 level using the	Critical value: 4.402874	
Bonferonni adjustment, what is the critical		
value that an absolute studentized residual	Degrees of freedom: 4570	
needs to exceed to be declared an outlier?		
What are the degrees of freedom? How	Number of outliers: 64	
many outliers are there?		
1.6 If you were to test for outliers in model	Model 2.	
2 at the two-sided 0.05 level using the	Critical value: 4.402874	
Bonferonni adjustment, what is the critical		
value that an absolute studentized residual	Degrees of freedom: 4570	
needs to exceed to be declared an outlier?		
What are the degrees of freedom? How	Number of outliers: 4	
many outliers are there?		
· ·		
2 Use model 2 in part 2 (5 points each)		

Answers	
Statistics 500, Problem 2, Fall 2015, p1. This problem set is an exam. D	o not discuss
it with anyone.	

2. Use model 2 in part 2. (5 points each)		
2.1 In model 2, which observation has the		
largest leverage? Give the row #. What is	Row #3972	Leverage value:
the numerical value of the leverage?	0.0158	

2.2 The person identified in 2.1 has large leverage because, despite having a high	TRUE	FALSE
bmi and sad, the person does not have lbxgh>6.5 or y>0.		
2.3 How many individuals have large		
leverage by our standard rule of thumb?	How many? 182	
Give one number.		
2.4 If you added 1 to the y for the person		
identified in question 2.1 and reran the	TRUE	FALSE
regression with this new y, the predicted		
value or yhat for this person would increase		
by more than 0.5.		

Answers
Statistics 500, Problem 2, Fall 2015, p2. This problem set is an exam. Do not discuss
it with anyone

it with anyone.						
3. Question 3 asks about model 2. (5 points	CIRCLE/FILL IN THE CORRECT					
each)	ANSWER					
3.1 Which observation has the largest						
absolute value of dffits? Give a row	Row #1785 dffits: -0.243					
number. What is the value (with its sign)						
of the dffits?						
3.2 The individual in 3.1 has a large dffits						
because she has the lowest lbxgh and y in	TRUE (FALSE)					
the data set and the highest sad.						
3.3 Using dfbetas, the individual in 3.1 is						
seen to move the coefficient of sad by half	TRUE (FALSE)					
its standard error.						
:						

4. Question 4 asks about model 2 and its	CIRCLE /FILL IN THE CORRECT
extensions. (6 points each, except 5 for 4.5)	ANSWER
4.1 In model 2, test for interaction between	
sad and female. What is the name of the	Name: t-test Value: 0.199
test statistic? What is the numerical value	
of the test statistic? What is P-value? Is it	P-value: 0.84
plausible that there is no interaction	Circle one
between sad and female?	PLAUSIBLE NOT PLAUSIBLE
between suc and remain.	
4.2 In model 2, use a centered quadratic	
term in sad to test whether the relationship	Name: t-test Value: 2.562
with sad is linear. What is the name of the	
test statistic? What is the numerical value	P-value: 0.0104
of the test statistic? What is P-value? Is it	Circleone
plausible that relationship between y and	PLAUSIBLE NOT PLAUSIBLE
sad is linear?	
4.3 Use Tukey's one-degree of freedom	
method to test the null hypothesis that no	P-value: 0.997
transformation of y is needed in model 2.	Sircle one
What is the P-value? Is the null hypothesis	PLAUSIBLE NOT PLAUSIBLE
plausible	
4.4 The original question is whether sad is	
better than bmi at predicting diabetes. In	TRUE (FALSE)
the fit of model 2, it is clear that sad is not	
needed as predictor of y if you have bmi,	
age and female.	
4.5 Give the squared multiple correlation,	
R^2 , for models 1 and 2. (5 points)	Model 1 R^2 : 0.1444 Model 2 R^2 : 0.2668
ix, for models I and 2. (5 points)	Houer I R . 0.1444 Houer 2 R . 0.2000

4.6 If you plot residuals of model 2 (as y)		
against fitted values from model 2 (as x)	TRUE	FALSE
and add a lowess smooth, you see a		
dramatic inverted-U shape.		

Fall 2015, Problem Set 2, Doing the Problem Set in R

```
> m1<-lm(lbxgh ~ age + female + sad + bmi)</pre>
> m2 < -lm(y ~ age + female + sad + bmi)
> par(mfrow=c(1,2))
> boxplot(m1$residuals)
> boxplot(m2$residuals)
> gqnorm(rstudent(m1))
> qqline(rstudent(m1))
> qqnorm(rstudent(m2))
> gqline(rstudent(m2))
> shapiro.test(rstudent(m1))
       Shapiro-Wilk normality test
data: rstudent(m1)
W = 0.63903, p-value < 2.2e-16
> shapiro.test(rstudent(m2))
       Shapiro-Wilk normality test
data: rstudent(m2)
W = 0.97161, p-value < 2.2e-16
> boxplot(rstudent(m1))
> boxplot(rstudent(m2))
> qt(.025/4576,4570)
[1] -4.402874
> help("outlierTest")
> library(car)
> outlierTest(m1,n.max=2000)
     rstudent unadjusted p-value Bonferonni p
3292 11.826358
                      8.2646e-32 3.7819e-28
4313 9.537447
                      2.3109e-21
                                   1.0575e-17
3967 4.414978
                                 4.7294e-02
                      1.0335e-05
> length(outlierTest(m1,n.max=2000)$rstudent)
[1] 64
> sum(abs(rstudent(m1))>=4.402874)
[1] 64
> outlierTest(m2,n.max=2000)
     rstudent unadjusted p-value Bonferonni p
3362 -6.614237 4.1638e-11 1.9054e-07
1785 -5.760300
                     8.9470e-09 4.0942e-05
3988 -4.615171
                      4.0353e-06 1.8466e-02
898 -4.468362
                      8.0726e-06 3.6940e-02
> sum(abs(rstudent(m2))>=4.402874)
[1] 4
Part 2
> which.max(hatvalues(m2))
3972
3972
> nhanes14st500[3972,]
> summary(sad)
  Min. 1st Ou. Median Mean 3rd Ou.
                                         Max.
                22.20
        19.30
                         22.62 25.40
  13.10
                                         40.00
> summary(bmi)
  Min. 1st Qu. Median
                        Mean 3rd Qu.
                                         Max.
         24.10 27.70
  14.10
                         28.75 32.10
                                         67.50
> max(hatvalues(m2))
```

Part 1.

```
[1] 0.0158098
> mean(hatvalues(m2))
[1] 0.001092657
> 2*mean(hatvalues(m2))
[1] 0.002185315
> 2*(5/4576)
[1] 0.002185315
> sum(hatvalues(m2)>=0.002185315)
[1] 182
Part 3
> which.max(abs(dffits(m2)))
1785
> nhanes14st500[1785,]
> dffits(m2)[1785]
-0.2430739
> dfbetas(m2)[1785,]
(Intercept)
                   age
                            female
                                          sad
                                                      bmi
0.10847980 0.06293416 -0.06076407 0.01112735 -0.08829110
Part 4
4.1
> fs<-female*sad</pre>
> m2a < -lm(y ~ age + female + sad + bmi + fs)
> summary(m2a)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.4558271 0.0660460 -37.184 <2e-16 ***
                                         <2e-16 ***
            0.0139349 0.0005342 26.084
age
           -0.0092342 0.0872408 -0.106
female
                                           0.916
                                         <2e-16 ***
            0.0476955 0.0050535 9.438
sad
           -0.0046524 0.0032582 -1.428
                                         0.153
bmi
            0.0007604 0.0038272 0.199
                                          0.843
fs
4.2
> s2<-(sad-mean(sad))^2</pre>
> m2b < -lm(y ~ age + female + sad + bmi + s2)
> summary(m2b)
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.4394789 0.0481298 -50.685 <2e-16 ***
            0.0140531 0.0005355 26.245 <2e-16 ***
age
           0.0056009 0.0180846 0.310 0.7568
female
            0.0471909 0.0049120 9.607
                                          <2e-16 ***
sad
           -0.0055487 0.0032213 -1.723
bmi
                                          0.0850 .
            0.0008271 0.0003229 2.562 0.0104 *
s2
4.3
> summary(lm(y ~ age + female + sad + bmi+tukey1df(m2)))
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.4650399 0.0473411 -52.070 <2e-16 ***
             0.0139385 0.0005348 26.065
aqe
                                           <2e-16 ***
female
             0.0077219 0.0180860 0.427
                                           0.669
                                          <2e-16 ***
sad
             0.0479333 0.0049454 9.693
bmi
            -0.0045282 0.0032177 -1.407 0.159
tukey1df(m2) -0.0004076 0.1090079 -0.004 0.997
> plot(m2$fitted.values,m2$residuals)
> lines(lowess(m2$fitted.values,m2$residuals),col="red")
```

PROBLEM SET #3 STATISTICS 500 FALL 2015: DATA PAGE 1 Due in class at noon, Thursday, 17 Decmeber 2015 This is an exam. Do not discuss it with anyone.

For part 1, the data are the same as for Problem Set 2. These data are from the 2013-2014 NHANES. The data are in an object nhanes1314st500 in the course workspace. > dim(nhanes14st500)
[1] 4576 13

> head(nhanes14st500)
 seqn lbxgh female age systolic diastolic pulse weight height bmi waist sad
y
1 73557 13.9 0 69 122 72 86 78.3 171.3 26.7 100.0 20.5 1.23443
06
2 73558 9.1 0 54 156 62 74 89.5 176.8 28.6 107.6 24.2 0.74297
55

The variables are as follows. (i) seqn is the NHANES id number, (ii) lbxgh is a measure of glycohemoglobin, recorded as a percent, where high values, above 6.5, are indicative of diabetes, (iii) female = 1 for female, 0 for male, (iv) age is in years, (v) systolic and diastolic record blood pressure, (vi) pulse is pulse, (vii) weight is recorded in kilograms, (viii) height, waist circumference and sad are recorded in centimeters. sad is sagittal abdominal diameter, the height indicated below – it is thought to be an improvement on "bmi" = body mass index as a measure of health risk.

The final variable, y, is just a transformation of lbxgh as in Problem Set 2. Create the following x matrix.

So you will be considering 7 predictors, female, age, weight, height, bmi, waist and sad. As in the second problem set, you will predict y, the transformed lbxgh, contained in nhanes14st500 as its last column. You will use leaps. You should plot C_P against the size of the model and think about the plot before doing part 1.

Several questions say " C_P suggests xyz." Remember C_P is an estimate of a population quantity J_P , so C_P has some sampling error and is not equal to J_P . " C_P suggests xyz" means "if we ignore the sampling error in the estimate, pretending that $J_P=C_P$ then xyz would be true." Example: " C_P suggests the moon is made of green cheese" means "if the true value of J_P were equal to the observed value of C_P , then the moon would be made of green cheese."

PROBLEM SET #3 STATISTICS 500 FALL 2015: DATA PAGE 2 Due in class at noon on Thursday 17 December 2015 This is an exam. Do not discuss it with anyone.

The second data set for part 2 is from NHANES 2011-2012. The data are in an object smkdustfume in the course workspace and are available on my web page as data.csv. It has 868 people in four groups of size 217, 868=4x217, recorded in the variables dfsmkf and dfsmki. Groups dustfume and both were exposed at work for at least 10 years to dusts or fumes. Groups smoker and both were daily smokers. Groups neither and dustfumes smoked fewer than 100 cigarettes in their lives. The variable dustfumesy is the total years of exposure to dusts and fumes, whereas mineraly, organic, efumesy and ofumesy record years of exposure to mineral dust, organic dust, exhaust fumes and other fumes. Other variables are SEQN = NHANES id, age, female=1, fev1, fvc, and fvratio = fev1/fvc, where fvratio is the Tiffeneau-Pinelli index, a measure of chronic obstructive lung disease. Lower values of fvratio indicate poor lung function.

You should plot the data in boxplot(fvratio~dfsmkf). You should see how big the groups are in table(dfsmkf). Question 2.4 asks for group names: the names are in dfsmkf.

The model for part 2, **MODEL A**, is $y_{ij} = \mu + \alpha_i + \varepsilon_{ij}$ where for i = 1, 2, 3, 4 groups defined by dfmskf and j = 1, 2, ..., 217 people in group i, where $\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 = 0$ and ε_{ij} are iid N(0, σ^2), and y_{ij} is the fortie for the jth person in group i.

Follow instructions. Write your name on both sides of the answer page. If a question has several parts, answer every part. Turn in only the answer page. Do not turn in additional pages. Do not turn in graphs. Brief answers suffice. Do not circle TRUE adding a note explaining why it might be false instead. If a question asks you to circle an answer, then you are correct if you circle the correct answer and wrong if you circle the wrong answer. If you cross out an answer, no matter which answer you cross out, the answer is wrong. If a true/false question says A&B&C and if C is false, then A&B&C is false, even if A&B is true. This is an exam. Do not discuss the exam with anyone. If you discuss the exam, you have cheated on an exam. The single dumbest thing a PhD student at Penn can do is cheat on an exam.

The exam is due in my office, 473 JMHH, Thursday, Dec 17, 2014 at noon. You may turn in the exam early by placing it in an envelope addressed to me and leaving it in my mail box in statistics, 4th floor, JMHH. If you prefer, give it to Noelle at the front desk in statistics. **Make and keep a photocopy of your answer page**. The answer key will be posted in the revised bulk pack on-line. You can compare your photocopy to the on-line answer page.

Have a great holiday!

	l anyone.
Use leaps and the 7 predictors in x for the nhanes14st500 data to predict y.	Fill in or CIRCLE the correct answer.
1.1 With 7 predictors, how many possible regressions can be formed as subsets of the 7 predictors? In your count, include the regression with 7 predictors and the regression with no predictors.	Number:
1.2 Among regressions with just one of the seven predictors, which single predictor yields the smallest C_P ? What is the "size" of this model? What is the value of C_P ?	Which predictor? (variable name): Size= C _P =
1.3 A model with fewer predictors may or may not produce better predictions than a model with more predictors. Does the value of C_P in question 1.2 suggest it produces better predictions than the best two-predictor model (as judged by C_P)?	CIRCLE ONE YES NO
1.4 Of the 7 models that use 6 of the 7 predictors, which one is worst in the opinion of C_P ? Name the variable left out of this worst model. What is the "size" of	Which predictor is left out: Size= C _P =
this model? What is the value of C_P ? 1.5 The value of C_P for the model in question 1.4 suggests that the total squared error of predictions from the model in 1.4 are more than 60 times larger than the total squared error of the predictions from the model with all 7 variables.	CIRCLE ONE TRUE FALSE
 1.6 Give the value of C_P for the best 5 predictor model and for the best 6 predictor model. List predictors in the best 6 predictor model that are not in the best 5 predictor model. List predictors, if any, in the best 5 predictor model that are not in the best 6 predictor model; if none, write "none". "5" is short for the best regression with 5 predictors, and "6" is short for the best regression with 6 predictors. 	5 predictor 6 predictor C_{P} = C_{P} = Names of predictors in: 5 but not in 6: 6 but not in 5:
1.7 The 6 predictor model in question 1.6	CIRCLE ONE

Statistics 500, Problem 3, Fall 2015, p1. This problem set is an exam. Do not discuss it with anyone.

is estimated to make worse predictions	
than the 5 predictor model in question 1.6.	TRUE FALSE
1.8 At the 0.05 level, Spjotvoll's method	
rejects as inadequate every model that	CIRCLE ONE
excludes female, and every model that excludes sad, but it rejects neither of the two models in question 1.6.	TRUE FALSE
1.9 Give the variance inflation factors for age and weight in the model with all 7 predictors.	Age vif = Weight vif =
1.10 Give the value of press for the 7 predictor model and the (bad) 6 predictor model in question 1.4.	7-predictor press: bad-6- press:

		with an	•		
Use the smkdustfume data and MODEL A			Fill in or CIRCLE the correct answer		
to answer questions in	swer questions in part 2.				
2.1 Do a one-way ana	lysis of varianc	e to			
test the null hypothesis that the four groups			Name:	Value:	
do not differ in their fyratios. What is the					
	name of the test? What is the numerical				
value of the test statis			P-value:		
value? Is the null hyp			varue		
value: is the null hyp	oulesis plausion				
			PLAUSIBLE NOT PLAUSIBLE		
2.2 Use Uslm's moth	ad to commons t	ha			
2.2 Use Holm's metho	-		T	a a ta D	
four groups in pairs co	-	-	•	ests?	
wise error rate despite			-	of groups do no	
How many tests are d	1	U	List (name I,	name2) or writ	e NONE.
4 groups in all possibl	-	ie			
pairs of groups that do		.			
significantly at the 0.0	•				
method, listing pairs of					
so if abc does not diff					
(abc, xyz). If none, w		o not			
use group #s, use gro	up names.				
2.3 Holm's method co	ontrols the				
familywise error rate	in the weak sense	se but	TRUE FALSE		
not in the strong sense	e, but the Bonfe	rroni			
method controls in the strong sense.					
2.4 If you used the Bonferroni method, not					
the Holm method, the			Г	TRUE FA	LSE
(both,smoker) would	-	-			
with Holm's method.		8 • • • •			
2.5 In the table below	create 3 orthou	onal cor	trasts one r	enresenting the	main effect of
smoking, one represer					
interaction. Use integ	-			-	ting then
<u>ل</u>		Smo		Dustfumes	Both
Group		51110		Dustrumes	DUII
Contrast:Smoking	-				
Main effec					
Contrast:Dust/Fumes					
Main effec					
Contrast:Interaction	1				
2.6 Use the contrasts i	in 2.5 to fill in t	he follow	ing detailed	l anova table. D	F= degrees of
freedom.					
	Sum of	DF	Mean	F	P-value
	squares		Square		
Between Groups	•		<u> </u>		

Due December 17, Thursday, noon. This problem set is an exam. Do not discuss it with anyone.

Smoking Main			
Dust/Fume Main			
Interaction			
Residual within		XXXXXX	XXXXXX
groups		XXXXXX	XXXXXX

Statistics 500, Problem 3, Fall 2015, ANSWERS					
Use leaps and the 7 predictors in x for the	Fill in or CIRCLE the correct answer.				
nhanes14st500 data to predict y.	(6 points each)				
1.1 With 7 predictors, how many possible					
regressions can be formed as subsets of the	Number: $2^7 = 128$				
7 predictors? In your count, include the					
regression with 7 predictors and the					
regression with no predictors.					
1.2 Among regressions with just one of the					
seven predictors, which single predictor	Which predictor? (variable name): age				
yields the smallest C_P ? What is the "size"					
of this model? What is the value of C_P ?	Size=2 $C_P = 529.284$				
1.3 A model with fewer predictors may or	CIRCLE ONE				
may not produce better predictions that a					
model with more predictors. Does the	YES (NO)				
value of C_P in question 1.2 suggest it	\smile				
produces better predictions than the best					
two-predictor model (as judged by C_P)?					
1.4 Of the 7 models that use 6 of the 7					
predictors, which one is worst in the	Which predictor is left out: age				
opinion of C_P ? Name the variable left out					
of this worst model. What is the "size" of	Size=7 $C_P = 503.73$				
this model? What is the value of C_P ?					
1.5 The value of C_P for the model in	CIRCLE ONE				
question 1.4 suggests that the total squared	\frown				
error of predictions from the model in 1.4	T RUE J FALSE				
are more than 60 times larger than the total	\mathbf{i}				
squared error of the predictions from the					
model with all 7 variables.					
1.6 Give the value of C_P for the best 5	5 predictor 6 predictor				
predictor model and for the best 6 predictor	1 1				
model. List predictors in the best 6	$C_{P}= 6.38$ $C_{P}= 6.07$				
predictor model that are not in the best 5	Names of predictors in:				
predictor model. List predictors, if any, in	1				
the best 5 predictor model that are not in	5 but not in 6: none				
the best 6 predictor model; if none, write					
"none".	6 but not in 5: weight				
"5" is short for the best regression with 5	C .				
predictors, and "6" is short for the best					
regression with 6 predictors.					
1.7 The 6 predictor model in question 1.6 is	CIRCLE ONE				
estimated to make worse predictions than					
the 5 predictor model in question 1.6.	TRUE (FALSE)				
1.8 At the 0.05 level, Spjotvoll's method					
rejects as inadequate every model that	CIRCLE ONE				

Statistics 500, Problem 3, Fall 2015, ANSWERS

excludes female, and every model that excludes sad, but it rejects neither of the two models in question 1.6.	TRUE FALSE
1.9 Give the variance inflation factors for age and weight in the model with all 7 predictors.	Age vif = 1.455 Weight vif = 89.232
1.10 Give the value of press for the 7 predictor model and the (bad) 6 predictor model in question 1.4.	7-predictor: 1399 bad-6- press: 1551

					-			
Use the smkdustfume	e the smkdustfume data and MODEL A		Fill in or CIRCLE the correct answer					
to answer questions in	part 2.		2.1-4 are 6 points, 2.5 and 2.6 are 8 points					
	Do a one-way analysis of variance to			Name: F-test Value: 22.74				
test the null hypothesis that the four groups								
• •	do not differ in their fyratios. What is the		P-value: 3.56×10^{-14}					
name of the test? Wh			1 Value: 5.50 x 10					
value of the test statis			PLAUSIBLE NOT PLAUSIBLE					
value? Is the null hyp								
2.2 Use Holm's metho								
groups in pairs contro	1		How many tests? 6					
error rate despite doin			Which pairs of		not differ?			
many tests are done w	•		List (name1,	0 1				
•			List (name),	lialite2) of wi	ne nome.			
groups in all possible	-	-	(duatfumaa m	aith an)				
of groups that do not	-	-	(dustfumes, n	enner)				
the 0.05 level by Holr		U						
pairs of groups by na								
differ from xyz, write								
write NONE. Do not	use group #s, u	se						
group names.								
2.3 Holm's method co		•						
error rate in the weak			TF	RUE (FA	ALSE)			
strong sense, but the H		nod						
controls in the strong	sense							
2.4 If you used the Bonferroni method, not								
2.4 If you used the Bo	onferroni metho	d, not		\frown				
2.4 If you used the Bo the Holm method, the			TH	RUE FA	ALSE			
	P-value compa	ring	TH	RUE FA	ALSE			
the Holm method, the	P-value compa	ring	TH	RUE FA	ALSE			
the Holm method, the (both,smoker) would with Holm's method.	P-value compa be 3 times as lat	ring rge as						
the Holm method, the(both,smoker) wouldwith Holm's method.2.5 In the table below	P-value compa be 3 times as lan , create 3 orthog	ring rge as gonal cor	ntrasts, one rep	resenting the	main effect of			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represen	P-value compa be 3 times as lan , create 3 orthog nting the main e	ring rge as gonal cor	ntrasts, one rep dust/fumes and	resenting the one represen	main effect of			
the Holm method, the(both,smoker) wouldwith Holm's method.2.5 In the table belowsmoking, one represent interaction. Use integrit	P-value compa be 3 times as lan , create 3 orthog nting the main e ger contrast weig	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de	resenting the one represencimals.	main effect of ting their			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integer Group	P-value compa be 3 times as land , create 3 orthogon ting the main e er contrast weigon Neither	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de moker	resenting the one represencimals.	main effect of ting their Both			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integender Group Contrast:Smoking	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig Neither g -1	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de	resenting the one represencimals.	main effect of ting their			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represen interaction. Use integ Group Contrast:Smoking Main effec	P-value compa be 3 times as land , create 3 orthogon ting the main ender er contrast weign Neither g -1	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de moker	resenting the one represencimals. Dustfumes -1	main effect of ting their Both 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes	P-value compa be 3 times as land , create 3 orthogon ting the main ender contrast weig Neither g -1 t s -1	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de moker	resenting the one represencimals.	main effect of ting their Both			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes Main effec	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig Neither g -1 t t -1	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de moker 1 1 -1	resenting the one represencimals. Dustfumes -1 1	main effect of ting their Both 1 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig Neither g -1 t t -1	ring rge as gonal cor effect of c ghts, not	ntrasts, one rep dust/fumes and fractions or de moker	resenting the one represencimals. Dustfumes -1	main effect of ting their Both 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integed Group Contrast:Smoking Main effect Contrast:Dust/Fumes Main effect Contrast:Interaction	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig 0 Neither g -1 t s -1 t 1 1	ring rge as gonal cor effect of c ghts, not S	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1	resenting the one represencimals. Dustfumes -1 1 -1	main effect of ting their Both 1 1 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integed Group Contrast:Smoking Main effect Contrast:Dust/Fumes Main effect Contrast:Interaction 2.6 Use the contrasts in	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig 0 Neither g -1 t s -1 t 1 1	ring rge as gonal cor effect of c ghts, not S	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1	resenting the one represencimals. Dustfumes -1 1 -1	main effect of ting their Both 1 1 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integed Group Contrast:Smoking Main effect Contrast:Dust/Fumes Main effect Contrast:Interaction	P-value compa be 3 times as land , create 3 orthogon ting the main end er contrast weige 0 Neither g -1 t s -1 t n 2.5 to fill in the particular of the second s -1 t -1	ring rge as gonal cor effect of c ghts, not S he follow	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed at	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D	main effect of ting their Both 1 1 1 DF= degrees of			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integed Group Contrast:Smoking Main effect Contrast:Dust/Fumes Main effect Contrast:Interaction 2.6 Use the contrasts in	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig <u>o Neither</u> g -1 t s -1 t n 1 S to fill in t	ring rge as gonal cor effect of c ghts, not S	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed an Mean	resenting the one represencimals. Dustfumes -1 1 -1	main effect of ting their Both 1 1 1			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes Main effec Contrast:Interaction 2.6 Use the contrasts in freedom.	P-value compa be 3 times as land , create 3 orthogon ting the main end on Neither g -1 t -1 t -1 t -1 t -1 t -1 t -1 t -1 t	ring rge as gonal cor effect of c ghts, not S he follow DF	htrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed at Mean Square	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D	main effect of ting their Both 1 1 1 DF= degrees of P-value			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use integed Group Contrast:Smoking Main effect Contrast:Dust/Fumes Main effect Contrast:Interaction 2.6 Use the contrasts in	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig <u>o Neither</u> g -1 t s -1 t n 1 S to fill in t	ring rge as gonal cor effect of c ghts, not S he follow	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed an Mean	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D	main effect of ting their Both 1 1 1 DF= degrees of			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes Main effec Contrast:Interaction 2.6 Use the contrasts in freedom. Between Groups	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig Neither g -1 t a -1 t n 1 Sum of squares 0.4665	ring rge as gonal cor effect of c ghts, not S he follow DF 3	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed at Mean Square 0.1555	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D F 22.74	main effect of ting their Both 1 1 PF= degrees of P-value 3.56×10^{-14}			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes Main effec Contrast:Interaction 2.6 Use the contrasts in freedom.	P-value compa be 3 times as land , create 3 orthogon ting the main end on Neither g -1 t -1 t -1 t -1 t -1 t -1 t -1 t -1 t	ring rge as gonal cor effect of c ghts, not S he follow DF	htrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed at Mean Square	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D	main effect of ting their Both 1 1 1 DF= degrees of P-value			
the Holm method, the (both,smoker) would with Holm's method. 2.5 In the table below smoking, one represent interaction. Use intege Group Contrast:Smoking Main effec Contrast:Dust/Fumes Main effec Contrast:Interaction 2.6 Use the contrasts in freedom. Between Groups	P-value compa be 3 times as lar , create 3 orthog nting the main e er contrast weig Neither g -1 t a -1 t n 1 Sum of squares 0.4665	ring rge as gonal cor effect of c ghts, not S he follow DF 3	ntrasts, one rep dust/fumes and fractions or de moker 1 -1 -1 -1 ving detailed at Mean Square 0.1555	resenting the one represencimals. Dustfumes -1 1 -1 nova table. D F 22.74	main effect of ting their Both 1 1 PF= degrees of P-value 3.56×10^{-14}			

Interaction	0.0222	1	0.0222	3.25	0.07184
Residual within groups	5.9083	864	0.0068	XXXXXX XXXXXX	XXXXXX XXXXXX

```
PROBLEM SET #3 STATISTICS 500 FALL 2015
                                                                ANSWERS
                       DOING THE PROBLEM SET IN R
1.1
> 2^7
[1] 12
> attach(nhanes14st500)
> x<-nhanes14st500[,c(3,4,8,9,10,11,12)]</pre>
> nhl<-leaps(x=x,y=y,names=colnames(x))</pre>
> plot(nhleaps$size,nhleaps$Cp)
> abline(0,1)
> plot(nhl$size,nhl$Cp)
> abline(0,1)
> cbind(nhl$which,nhl$size,nhl$Cp)[35:55,]
  female age weight height bmi waist sad
4
       0 1
                   0
                         0 1 1 1 5 46.273615
4
       1 1
                    0
                            0 0
                                      1 1 5 46.286152
          1
                            0 1
                                     0 1 5 51.533812
4
                   0
       1

      0
      1
      1
      0
      1
      6
      6.375960

      1
      1
      0
      1
      6
      9.553443

      0
      1
      0
      1
      1
      6
      12.083396

5
       1
          1
5
       1 1
5
       1 1
                0
•••
                        0 1 1 1 6 48.271690
1 1 0 1 7 6.066912
5
       1 1
       1 1
                                                 6.066912
6
                            1 1
                                                 8.375293
       1 1
                                      1 1 7
6
                   0
                                       1 1 7 11.390767
                           1
6
       1 1
                    1
                                0
                   1
6
       1 1
                          0 1
                                      1 1 7 19.194041
                   1
                                     1 1 7 21.556761
6
                          1 1
       0 1

      1
      1
      1
      0
      7
      90.768968

      1
      1
      1
      1
      7
      503.726589

      1
      1
      1
      1
      8
      8.000000

б
       1 1
       1 0
б
7
       1 1
> nhsp<-spjotvoll(x,y)</pre>
> nhsp[!nhsp$inadequate,]
   р
        Cp Fp pval adjusted.pval inadequate female age weight height bmi waist sad
99 6 6.376 1.188 0.305 0.305 FALSE 1 1 0 1 1 0 1
                            0.062
                                      FALSE
                                                1 1
100 6 9.553 2.777 0.062
                                                           1
                                                                  1 0
                                                                           0
                                                                              1
120 7 6.067 0.067 0.796
                            0.796
                                      FALSE
                                                1 1
                                                           1
                                                                 1
                                                                     1
                                                                          0
                                                                              1
                            0.305
                                                1 1
                                                         0
121 7 8.375 2.375 0.123
                                      FALSE
                                                                 1 1
                                                                           1 1
122 7 11.391 5.391 0.020
                            0.062
                                     FALSE
                                                1 1
                                                         1
                                                                1 0
                                                                         1 1
127 8 8.000 NA 1.000
                            1.000 FALSE
                                                1 1
                                                          1
                                                                1 1 1 1
> library(DAAG)
> m<-lm(y~female+age+weight+height+bmi+waist+sad)</pre>
> vif(m)
 female
             age weight height
                                        bmi waist
                                                          sad
 1.9853 1.4553 89.2320 20.8960 70.8950 14.7730 11.1800
> m<-lm(y~female+age+weight+height+bmi+waist+sad)</pre>
> press(m)
[1] 1399.262
> m2<-lm(y~female+weight+height+bmi+waist+sad)</pre>
> press(m2)
[1] 1551.129
```

```
PROBLEM SET #3 STATISTICS 500 FALL 2015
                                                        ANSWERS
                    DOING THE PROBLEM SET IN R
2.
> attach(smkdustfume)
> boxplot(fvratio~dfsmkf)
> table(dfsmkf)
2.1
> anova(lm(fvratio~dfsmkf))
Analysis of Variance Table
Response: fvratio
          Df Sum Sq Mean Sq F value Pr(>F)
           3 0.4665 0.155499 22.739 3.559e-14 ***
dfsmkf
Residuals 864 5.9083 0.006838
> pairwise.t.test(fvratio,dfsmkf)
       Pairwise comparisons using t tests with pooled SD
         both dustfumes neither
dustfumes 1.2e-10 -
neither 2.8e-11 0.80542
smoker 0.01060 0.00023 0.00011
P value adjustment method: holm
> pairwise.t.test(fvratio,dfsmkf,p.adj="bonf")
       Pairwise comparisons using t tests with pooled SD
                 dustfumes neither
         both
dustfumes 1.5e-10 -
neither 2.8e-11 1.00000
smoker 0.03180 0.00046 0.00016
P value adjustment method: Bonferroni
0.03180 = 3*0.01060
> contrasts(dfsmkf)
> smk<-c(1,-1,-1,1)
> dufu<-c(1,1,-1,-1)</pre>
> interact<-smk*dufu</pre>
> contrasts(dfsmkf)<-cbind(smk,dufu,interact)</pre>
> contrasts(dfsmkf)
         smk dufu interact
both
          1 1 1
               1
dustfumes -1
                        -1
                        1
neither -1 -1
smoker
          1
               -1
                       -1
> m<-model.matrix(lm(fvratio~dfsmkf))</pre>
> head(m)
> cor(m[,2:4])
> m<-as.data.frame(m)</pre>
> summary(lm(fvratio~m$dfsmkfsmk+m$dfsmkfdufu+m$dfsmkfinteract))
> anova(lm(fvratio~m$dfsmkfsmk+m$dfsmkfdufu+m$dfsmkfinteract))
Analysis of Variance Table
Response: fvratio
                 Df Sum Sq Mean Sq F value
                                            Pr(>F)
m$dfsmkfsmk
                  1 0.4126 0.41265 60.3442 2.254e-14 ***
m$dfsmkfdufu
                 1 0.0316 0.03163 4.6260 0.03177 *
m$dfsmkfinteract 1 0.0222 0.02221 3.2483
                                             0.07184 .
Residuals 864 5.9083 0.00684
```