

DEPARTMENT OF STATISTICS

STAT 613 Fall 2017

Regression Analysis for Business Syllabus

Instructors:

Emil Pitkinpitkin@wharton.upenn.edu429 JMHHRichard Watermanwaterman@wharton.upenn.edu443 JMHH

Source material

Required

- Class Notes. These can be downloaded directly from the Stat 613 Canvas e-room. They will be published in weekly installments.
- JMP 13 (software), SAS Institute, downloadable from upenn.onthehub.com
- Stine and Foster, *Statistics for Business*, Addison Wesley. References in this document are to the third edition, though the second edition is very similar.

Optional (on reserve at Lippincott Library)

- Sall, Creighton, Lehman, *JMP Start Statistics*, 5th Edition, SAS Institute.
- Freedman, Pisani and Purves, *Statistics*, 4th edition, Norton.
- Keller, *Statistics for Management and Economics*, 10th edition, 2014, South-Western Cengage Learning.
- Ellenberg, *How Not To Be Wrong: The Power of Mathematical Thinking*. 2014, Penguin Press. (Not on Reserve).

The fundamental material for the class is contained in the Class Notes, which will be discussed and elaborated in the class lectures. The Stine and Foster (SF) textbook elaborates on most (but not all) of the Class Notes. Links to the relevant readings in SF appear throughout the Class Notes.

JMP is the computer package we'll use extensively for statistical calculations and graphics. In particular, an essential component of 613 will be project work requiring substantial use of JMP. Although JMP is merely a tool and not the central point of the course, it is sufficiently useful that you will need it.

For those who would like further background materials, we recommend Sall, Creighton and Lehman (SHL), Freedman, Pisani and Purves (FPP) and Keller (K). SHL is an example-rich guide to statistical analysis with the statistics package JMP. FPP is a highly verbal and conceptual book - an excellent introduction both for "poets" who are unfamiliar with technical readings and for "quants" who would like a better sense of the reasoning behind statistics. K is in the style of a traditional "reference manual" and explains details and provides many formulas for statistical procedures that are not covered in class.

Class Preparation

As soon as possible, you should obtain and install JMP. Before each class, you should review the material from the previous class and you should skim the Class Notes that will be covered. This is a course that builds upon itself and it is crucial to not fall behind. The classes focus on critical interpretation of results and analysis of assumptions. We use JMP to carry out the computations, although the software itself is not the main focus of the course.

You should also read the relevant sections of the SF textbook as annotated throughout the Notes and shown in this syllabus. We strongly recommend that you review the exercises that conclude each chapter. The exercises in each chapter of the SF textbook begin with matching, true/false, and conceptual questions. You should routinely skim these exercises in every chapter; they review notation and basic properties of the methods covered in class. In addition, the course outline identifies specific additional "you do it" exercises that require data analysis or computation that is related to examples and topics of lectures. These exercises will not be graded but are useful for review.

Course Overview

This course provides the fundamental methods of statistical analysis, the art and science of extracting information from data. The course will begin with a focus on the basic elements of exploratory data analysis, probability theory and statistic inference. With this as a foundation, it will proceed to explore the use of the key statistical methodology known as regression analysis for solving business problems. These methods and their application will reappear in many other MBA classes and are part of the basic "tool kit" expected of all MBAs in their careers.

Days on which quizzes will be given are marked with an asterisk.

Lecture Date	Key Topics	Reading (SF)	Exercises
1	Course overview	Ch 4	4.55-56, 59
Aug 30	Variation		
	histogram, boxplot, mean, median, interquartile	SIA	1-4, p 153
	range, standard deviation, skewness, logarithm	p140	
2	Probability models	7,9	7.45, 47
Sep 06	independence, random variable, distribution,		9.35, 37, 43, 49
	expected value, SD and variance		4M, q56 (p223)
3	Normal models	12	12.39,41,43,
Sep 11	continuous random variable, quantiles		49, 4M q51
	(Empirical Rule), quantile plot, log-normal		(p297)
4*	Association	5	5.39, 43, 45, 53
Sep 13	contingency table, mosaic plot, chi-squared,		
	Simpson's paradox, lurking variable		
5	Conditional probability	8	8.39, 45, 47, 49
Sep 18	dependence, Bayes rule		
6	Sampling distributions	13, 14.1	
Sep 20	simple random sample, iid, Central Limit	SIA	
	Theorem	p298	
7*	Confidence intervals	15	15.39,43,49,51
Sep 25	inference, <i>t</i> -distribution, confidence level,		Submit Project
	margin of error		Installment 1
8	Hypothesis testing	16	16.39,43,45,47
Sep 27	Null and alternative hypotheses, Type I and II		
	errors, α -level, p -value, break-even analysis		
9	Comparing two samples	17	17.29, 31
Oct 02	Confounding, two-sample <i>t</i> -test, confidence		
	interval for difference, experimental design,		
	paired sampling		
10	Dependence and portfolios	6, 10	
Oct 4	Measures of linear association, covariance,		
	correlation, portfolios and the volatility drag		
11*	Fitting lines to data	19	19.39, 41, 43, 47
Oct 9	Slope and intercept, fitted values and residuals,		
	r-squared		
Oct 11	Review Lecture		
	Variation, inference, testing		
Oct 16	Midterm Exam 6-8pm		Submit Project Installment 2

12	Fitting curves to data	20	20.33, 35, 37
Oct 23	Transformations (logarithm, reciprocal),		
	elasticity		
13	Simple regression model	21.1-2	
Oct 25	Parameters, assumptions, basic diagnostics		
14	Remedies for common problems	22	22.37,39,45
Oct 30	Nonlinearity, dependence, heteroscedasticity,		4M (q49, p628)
	outliers		
15*	Inference for the Simple Regression Model	21.3-4	21.39,41,43,47
Nov 01	Tests, confidence intervals, prediction intervals		
16	Multiple regression	23.1-2	
Nov 06	Scatterplot matrix, marginal and partial slope, path diagram		
17	Multiple regression model	23.3-5	23.39, 41, 43, 47
Nov 08	R^2 , F-statistic, model profile, diagnostic plots		
18*	Collinearity in multiple regression	24	24.33, 35, 37, 41
Nov 13	Variance inflation factor		Submit Project
			Installment 3
19	Using categorical variables in regression	25.1-4	25.39, 41, 43, 47
Nov 15	Dummy variable, partial <i>F</i> -test, model profile		
	Week of Thanksgiving: No STAT 613 Lectures		
20	More categorical predictors	25.5	
Nov 27	More calegorical predictors	25.5	
21*	Review: building a regression model	SIA	
Nov 29	Stepwise regression, data mining	p815	
22	Forecasting with regression models	27.2-3	27.37,39,43
Dec 04	Lagged variable, autoregression, Durbin-		
	Watson, seasonality		
23	Installment 4 project review		
Dec 06			
D 15	Einal Europ 0 11om		Submit Final
Dec 15	Final Exam 9-11am		Project
			Installment

Attendance

Attendance is an important aspect of the Wharton commitment. Wharton students are admitted in part because of the experiences they bring to the community that they can add to class discussions. Without attending, learning as a collaborative process cannot exist. Accordingly, absences are only appropriate in cases of personal emergency. In addition, late arrival is disruptive to the learning environment and promptness is expected. Please make note of the start of the term and the time of deliverables and exams as you make travel plans. In case of illness, we require a letter of confirmation from Student Health Services. If you find yourself in a conflict due to your career search or recruiting

activity, you should work with the MBA Career Management Office to find a resolution. Absences due to recruiting are not excused. Employers are prohibited from requiring recruiting-related activities (e.g., interviews, events or travel) that conflict with a student's academic commitments. An employer's inflexibility on this issue is a violation of Wharton's recruiting policies.

Exercises, Quizzes and Exam

There will be weekly exercises as indicated in the course syllabus. These exercises will not be collected, but they are essential for the learning process and you should treat them as a requirement. The textbook supplies brief answers to these questions and office hours are available for further questions.

There will be six in-class quizzes throughout the course. See the Canvas calendar for dates.

There will be a two-hour midterm and a two-hour final exam.

Learning Team Project

A project will be assigned to each learning team during the course. It will entail the statistical analysis of a data for a business application that your team will describe in four installments. It will be possible to complete these installments before the listed due dates, and you are encouraged to submit them early.

This project must reflect the work of only your learning team. You are strictly forbidden from discussing this project with anyone outside your learning team.

Please note that your team for Stat 613 may differ somewhat from your ordinary learning team. We will assign teams after the second week of class.

Teaching Assistants (TAs)

TAs for Stat 613 will hold office hours throughout the course. Times and locations will be posted in the 613 Canvas e-room.

The TAs for Stat 613 are:

- Sameer Deshpande (<u>dsameer@wharton.upenn.edu</u>)
- Gemma Moran (gmoran@wharton.upenn.edu)

Classroom Expectations - Concert Rules

- Class starts and ends on time.
- Sit according to the seating chart (posted on line in Canvas).
- Late entry or reentry only under exceptional circumstances.
- Name tents displayed.
- Phones, laptops and other electronic devices turned off. Tablets (e.g., an iPad, Surface etc.) can be used to take notes in class.

Grading

Grades for the course will be based on the following components

Final Examination 35% Midterm Examination 25% In-class Quizzes (6, lowest score dropped) 15%

Project (4 installments) 20% (3, 4, 5 and 8% respectively)

Concert rules, including attendance 5%

Instructor Office Hours

• Richard Waterman: Tuesdays, 2-4 PM in 443 JMHH.

• Emil Pitkin: Mondays, 3-5 PM in 400 JMHH.

• Sameer Deshpande, Thursdays 3:30-4:30pm in JMHH F96.

• Gemma Moran, Mondays 5:00-6:00pm in JMHH F96.