

DEPARTMENT OF STATISTICS

STAT 613

Fall 2019

Regression Analysis for Business Syllabus

Instructors:

Abraham (Adi) Wyner	ajw@upenn.edu	448 JMHH
Emil Pitkin	pitkin@wharton.upenn.edu	429 JMHH

Source material

Required

- Class Notes. These can be downloaded directly from the Stat 613 Canvas e-room.
- JMP 14 (Accessible for free through canvas)
- Stine and Foster, *Statistics for Business*, Addison Wesley. References in this document are to the third edition, though the second edition is very similar.

Optional (on reserve at Lippincott Library)

- Sall, Creighton, Lehman, JMP Start Statistics, 5th Edition, SAS Institute.
- Freedman, Pisani and Purves, *Statistics*, 4th edition, Norton.
- Keller, *Statistics for Management and Economics*, 10th edition, 2014, South-Western Cengage Learning.
- Ellenberg, *How Not To Be Wrong: The Power of Mathematical Thinking.* 2014, Penguin Press. (Not on Reserve).

The fundamental material for the class is contained in the Class Notes, which will be discussed and elaborated in the class lectures. The Stine and Foster (SF) textbook elaborates on most (but not all) of the Class Notes. Links to the relevant readings in SF appear throughout the Class Notes.

JMP is the computer package we'll use extensively for statistical calculations and graphics. In particular, an essential component of 613 will be project work requiring substantial use of JMP. Although JMP is merely a tool and not the central point of the course, it is sufficiently useful that you will need it.

For those who would like further background materials, we recommend Sall, Creighton and Lehman (SHL), Freedman, Pisani and Purves (FPP) and Keller (K). SHL is an example-rich guide to statistical analysis with the statistics package JMP. FPP is a highly verbal and conceptual book - an excellent introduction both for "poets" who are unfamiliar with technical readings and for "quants" who would like a better sense of the reasoning behind statistics. K is in the style of a traditional "reference manual" and explains details and provides many formulas for statistical procedures that are not covered in class.

Class Preparation

Before each class, you should review the material from the previous class and you should skim the Class Notes that will be covered. This is a course that builds upon itself and it is crucial to not fall behind. The classes focus on critical interpretation of results and analysis of assumptions. We use JMP to carry out the computations, although the software itself is not the main focus of the course.

You should also read the relevant sections of the SF textbook as annotated throughout the Notes and shown in this syllabus. We strongly recommend that you review the exercises that conclude each chapter. The exercises in each chapter of the SF textbook begin with matching, true/false, and conceptual questions. You should routinely skim these exercises in every chapter; they review notation and basic properties of the methods covered in class. In addition, the course outline identifies specific additional "you do it" exercises that require data analysis or computation that is related to examples and topics of lectures. These exercises will not be graded but are useful for review.

Course Overview

This course provides the fundamental methods of statistical analysis, the art and science of extracting information from data. The course will begin with a focus on the basic elements of exploratory data analysis, probability theory and statistic inference. With this as a foundation, it will proceed to explore the use of the key statistical methodology known as regression analysis for solving business problems. These methods and their application will reappear in many other MBA classes and are part of the basic "tool kit" expected of all MBAs in their careers.

Days on which quizzes will be given are marked with an asterisk.

Lecture Date	Key Topics	Reading	Exercises
1	Course ou ami au	(SF)	1 55 56 50
Ι Δυσ 28	Course overview	Cli 4	4.33-30, 39
Aug 20	histogram hoxplot mean median interquertile	SIA	1.1 m 152
	range standard deviation skewness logarithm	51A n140	1-4, p 155
2	Drobability models	7.0	7 15 17
Sep 04	independence, random variable, distribution	7,9	0 25 27 /2 /0
Seper	expected value, SD and variance		9.55, 57, 45, 49
3	Normal models	12	12 30 41 43
Sen 9	continuous random variable quantiles	12	12.57, 41, 45, 10 /M a51
Sep 9	(Empirical Rule), quantile plot		(n207)
/1*	Association	5	$(p_2)(r)$
Sep 11	contingency table mosaic plot chi-squared	5	5.57, 45, 45, 55
500 11	Simpson's paradox lurking variable		
5	Conditional probability	8	8 30 15 17 10
Sep 16	dependence Bayes rule	0	0.57, +5, +7, +7
6	Sampling distributions	13 14 1	
Sep 18	simple random sample, jid Central Limit	SIA	
5 - p 10	Theorem	n298	
7*	Confidence intervals	15	15 39 43 49 51
Sep 23	inference t-distribution confidence level	15	15.57,75,77,51
5 0 p 25	margin of error		
8	Hypothesis testing	16	16 39 43 45 47
Sep 25	Null and alternative hypotheses. Type I and II	10	Submit Project
~ • P = •	errors a level n value break even analysis		Installment 1
0	Comparing two samples	17	17 20 31
Sep 30	Confounding two-sample t-test confidence	1 /	17.29, 51
5 0 p 50	interval for difference experimental design		
	naired sampling		
10	Dependence and portfolios	6 10	
Oct 2	Measures of linear association covariance	0,10	
	correlation portfolios and the volatility drag		
11*	Fitting lines to data	19	19 39 41 43 47
Oct 7	Slope and intercept fitted values and residuals	17	17.57, 11, 1 5, 1 7
	r-squared		
Oct 9	Review Lecture (Yom Kinnur).		
	Variation. inference. testing		
			Submit Proiect
Oct 14	<i>Midterm Exam</i> 6-8pm		Installment 2

10	T 1	20	<u> </u>
12	Fitting curves to data	20	20.33, 35, 37
Oct 21	Transformations (logarithm, reciprocal),		
	elasticity		
13	Simple regression model	21.1-2	
Oct 23	Parameters assumptions basic diagnostics	21.1 2	
1/	Remedies for common problems	22	22 37 39 45
$\Omega ct 28$	Nonlingerity dependence beteroseedesticity		4M(a40, n628)
001 20	Noniniearity, dependence, neteroscedasticity,		41vi (q49, p028)
	outliers		
15*	Inference for the Simple Regression Model	21.3-4	21.39,41,43,47
Oct 30	Tests, confidence intervals, prediction intervals		
16	Multiple regression	23.1-2	
Nov 04	Scatterplot matrix, marginal and partial slope,		
	path diagram		
17	Multiple regression model	23.3-5	23.39, 41, 43, 47
Nov 06	R^{2} , <i>F</i> -statistic, model profile, diagnostic plots		
18*	Collinearity in multiple regression	24	24.33, 35, 37, 41
Nov 11			Submit Project
			Installment 3
19	Using categorical variables in regression	25.1-4	25 39 41 43 47
Nov 13	Dummy variable partial E tast model profile	23.1-4	23.37, 41, 43, 47
100 15	Dunning variable, partial F-test, model prome	25.5	
20	More categorical predictors	25.5	
Nov 18			
21*	Review: building a regression model	SIA	
Nov 20	Stepwise regression, data mining	p815	
	THANKSGIVING HOLIDAY		
22	Forecasting with regression models	27.2-3	27.37,39,43
Dec 02	Lagged variable, auto-regression, Durbin-		
	Watson, seasonality		
23	Installment 4 project review		
Dec 04			
	Installment 4 project due		Submit Final
Dec 15			Project
			Installment
			11:59 PM
Dec 17	<i>Final Exam</i> 9-11am		
1			

Attendance

Attendance is an important aspect of the Wharton commitment. Wharton students are admitted in part because of the experiences they bring to the community that they can add to class discussions. Without attending, learning as a collaborative process cannot exist. Accordingly, absences are only appropriate in cases of personal emergency. In addition, late arrival is disruptive to the learning environment and promptness is expected. Please make note of the start of the term and the time of deliverables and exams as you make travel plans. In case of illness, we require a letter of confirmation from Student Health Services. If you find yourself in a conflict due to your career search or recruiting activity, you should work with the MBA Career Management Office to find a resolution. Absences due to recruiting are not excused. *Employers are prohibited from requiring recruiting-related activities (e.g., interviews, events or travel) that conflict with a student's academic commitments.* An employer's inflexibility on this issue is a violation of Wharton's recruiting policies.

Why use JMP?

There are many statistical packages, including SAS, Minitab and Excel. If you are generous, you can even include Excel. JMP does not have a large user base and thus it is not likely to be the tool of choice when you return to the work force. But JMP has many advantages. It is **extremely** powerful. Indeed, its most recent versions are equipped with an unsurpassed suite of artificial intelligence tools including natural language processing, machine learning and internet data acquisition. It can be used entirely through a "point and click" interface which is super easy and highly conducive to exploration. Thus you can concentrate on understanding. You will also be doing very powerful analyses very quickly.

Exercises, Quizzes and Exam

There will be weekly exercises as indicated in the course syllabus. These exercises will not be collected, but they are essential for the learning process and you should treat them as a requirement. The textbook supplies brief answers to these questions and office hours are available for further questions.

There will be six in-class quizzes throughout the course. See the Canvas calendar for dates.

There will be a two-hour midterm and a two-hour final exam.

One week grade query maximum from the time work has been handed back.

Learning Team Project

A project will be assigned to each learning team during the course. It will entail the statistical analysis of a data for a business application that your team will describe in four installments. It will be possible to complete these installments before the listed due dates, and you are encouraged to submit them early. This project must reflect the work of only your learning team. You are strictly forbidden from discussing this project with anyone outside your learning team.

Please note that your team for Stat 613 may differ somewhat from your ordinary learning team. We will assign teams after the second week of class.

Teaching Assistants (TAs)

TAs for Stat 613 will hold office hours throughout the course. Times and locations will be posted in the 613 Canvas e-room.

The TAs for Stat 613 are:

- Emily Diana ediana@wharton.upenn.edu
- Cecilia Balocchi balocchi@wharton.upenn.du

Classroom Expectations - Concert Rules

- Class starts and ends on time.
- Late entry or reentry only under exceptional circumstances.
- Name tents displayed.
- Phones, laptops and other electronic devices turned off. Unless otherwise instructed. Tablets (e.g., an iPad, Surface etc.) can be used to take notes in class.

Grading

Grades for the course will be based on the following components

Final Examination	35%
Midterm Examination	25%
In-class Quizzes (6, lowest score dropped)	15%
Project (4 installments)	20% (3, 4, 5 and 8% respectively)
Concert rules, including attendance	5%

Instructor Office Hours

- Dr. Abraham Wyner: Wednesday 3pm-5pm. 448 JMHH.
- Dr. Emil Pitkin: Mondays, Monday 4pm-6pm in 429 JMHH.
- Emily TBD
- Cecilia TBD